References
- Akimoto, H., Wu, C., Kinumi, T. & Ohmiya, Y. 2004. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 315:306-312. https://doi.org/10.1016/j.bbrc.2004.01.054
- Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:447-487.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
- Cerff, R. 1995. The chimeric nature of nuclear genomes and the antiquity of introns as demonstrated by GAPDH gene system. In Go, M. & Schimmel, P. (Eds.) Tracing Biological Evolution in Protein and Gene Structures. Elsevier, Amsterdam, pp. 205-227.
- Chan, L. L., Hodgkiss, I. J., Lu, S. & Lo, S. C. -L. 2004. Use of two-dimensional gel electrophoresis proteome reference maps of dinoflagellates for species recognition of causative agents of harmful algal blooms. Proteomics 4:180-192. https://doi.org/10.1002/pmic.200300548
- Chan, L. L., Lo, S. C. -L. & Hodgkiss, I. J. 2002. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics 2:1169-1186. https://doi.org/10.1002/1615-9861(200209)2:9<1169::AID-PROT1169>3.0.CO;2-L
- Chan, L. L., Sit, W. -H., Lam, P. K. -S., Hsieh, D. P. H., Hodgkiss, I. J., Wan, J. M. -F., Ho, A. Y. -T., Choi, N. M. -C., Wang, D. -Z. & Dudgeon, D. 2006. Identification and characterization of a “biomarker of toxicity” from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae). Proteomics 6:654-666. https://doi.org/10.1002/pmic.200401350
- Fothergill-Gilmore, L. A. & Michels, P. A. 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59:105-235. https://doi.org/10.1016/0079-6107(93)90001-Z
- Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grun. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
- Harris, J. I. & Waters, M. 1976. Glyceraldehyde-3-phosphate dehydrogenase. In Boyer, P. D. (Ed.) The Enzymes. 3rd ed. Academic Press, New York, pp. 1-49.
- Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.
- Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396. https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
- Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
- Kim, G. H., Shim, J. B., Klochkova, T. A., West, J. A. & Zuccarello, G. C. 2008. The utility of proteomics in algal taxonomy: Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) as a model study. J. Phycol. 44:1519-1528. https://doi.org/10.1111/j.1529-8817.2008.00592.x
- NCBI. 2011. GenBank. Available from: http//www.ncbi.nlm.nih.gov. Accessed Feb 20, 2011.
- O’Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
- Seong, K. A, Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
- Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850-858. https://doi.org/10.1021/ac950914h
- Sirover, M. A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432:159-184. https://doi.org/10.1016/S0167-4838(99)00119-3
- Skovgaard, A. 1996. Engulfment of Ceratium spp. (Dinophyceae) by the thecate photosynthetic dinoflagellate Fragilidium subglobosum. Phycologia 35:490-499. https://doi.org/10.2216/i0031-8884-35-6-490.1
- Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
- Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
- Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
- Wang, D. -Z., Lin, L., Chan, L. L. & Hong, H. -S. 2009. Comparative studies of four protein preparation methods for proteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis. Harmful Algae 8:685-691. https://doi.org/10.1016/j.hal.2009.01.001
- Wong, P. -F., Tan, L. -J., Nawi, H. & AbuBakar, S. 2006. Proteomics of the red alga, Gracilaria changii (Gracilariales, Rhodophyta). J. Phycol. 42:113-120. https://doi.org/10.1111/j.1529-8817.2006.00182.x
Cited by
- Marine Proteomics: A Critical Assessment of an Emerging Technology vol.75, pp.10, 2012, https://doi.org/10.1021/np300366a
- Comparative proteomic studies of a Scrippsiella acuminata bloom with its laboratory-grown culture using a 15 N-metabolic labeling approach vol.67, 2017, https://doi.org/10.1016/j.hal.2017.05.009
- An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and CO2 influx vol.25, pp.5, 2013, https://doi.org/10.1007/s10811-013-9975-9
- Marine dinoflagellate proteomics: Current status and future perspectives vol.105, 2014, https://doi.org/10.1016/j.jprot.2014.01.026
- Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation vol.51, 2013, https://doi.org/10.1016/j.envint.2012.10.007
- Mixotrophy in microorganisms: Ecological and cytophysiological aspects vol.49, pp.4, 2013, https://doi.org/10.1134/S0022093013040014
- Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms vol.91, pp.None, 2020, https://doi.org/10.1016/j.hal.2019.03.005
- Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics vol.13, pp.1, 2011, https://doi.org/10.3390/toxins13010007