DOI QR코드

DOI QR Code

Comparative proteomics of the mixotrophic dinoflagellate Prorocentrum micans growing in different trophic modes

  • Shim, Jun-Bo (Department of Biology, Kongju National University) ;
  • Klochkova, Tatyana A. (Department of Biology, Kongju National University) ;
  • Han, Jong-Won (Department of Biology, Kongju National University) ;
  • Kim, Gwang-Hoon (Department of Biology, Kongju National University) ;
  • Yoo, Yeong-Du (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae-Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2011.01.23
  • Accepted : 2011.02.24
  • Published : 2011.03.15

Abstract

Protein profiles of a common mixotrophic dinoflagellate, Prorocentrum micans, growing autotrophically and mixotrophically (fed on the cryptophyte Rhodomonas salina) were compared using two-dimensional gel electrophoresis (2-DE) to determine if they vary in different trophic modes. Approximately 2.3% of the detected proteins were differentially expressed in the different trophic modes. Twelve proteins observed only in the mixotrophic condition had lower pI value (<5) than the fifteen proteins observed only in the autotrophic condition (>5). When the internal amino acid sequences of five selected proteins differentially expressed between autotrophic and mixotrophic conditions were analyzed using matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry, two proteins that were specifically expressed in the autotrophic condition showed homology to glyceraldehyde-3-phosphatase dehydrogenase (GAPDH) and a bacterial catalase. Three mixotrophy-specific proteins showed homology to certain hypothetical proteins from an insect and bacteria. These results suggested the presence of certain gene groups that are switched on and off according to the trophic mode of P. micans.

Keywords

References

  1. Akimoto, H., Wu, C., Kinumi, T. & Ohmiya, Y. 2004. Biological rhythmicity in expressed proteins of the marine dinoflagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 315:306-312. https://doi.org/10.1016/j.bbrc.2004.01.054
  2. Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:447-487.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  5. Cerff, R. 1995. The chimeric nature of nuclear genomes and the antiquity of introns as demonstrated by GAPDH gene system. In Go, M. & Schimmel, P. (Eds.) Tracing Biological Evolution in Protein and Gene Structures. Elsevier, Amsterdam, pp. 205-227.
  6. Chan, L. L., Hodgkiss, I. J., Lu, S. & Lo, S. C. -L. 2004. Use of two-dimensional gel electrophoresis proteome reference maps of dinoflagellates for species recognition of causative agents of harmful algal blooms. Proteomics 4:180-192. https://doi.org/10.1002/pmic.200300548
  7. Chan, L. L., Lo, S. C. -L. & Hodgkiss, I. J. 2002. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis. Proteomics 2:1169-1186. https://doi.org/10.1002/1615-9861(200209)2:9<1169::AID-PROT1169>3.0.CO;2-L
  8. Chan, L. L., Sit, W. -H., Lam, P. K. -S., Hsieh, D. P. H., Hodgkiss, I. J., Wan, J. M. -F., Ho, A. Y. -T., Choi, N. M. -C., Wang, D. -Z. & Dudgeon, D. 2006. Identification and characterization of a “biomarker of toxicity” from the proteome of the paralytic shellfish toxin-producing dinoflagellate Alexandrium tamarense (Dinophyceae). Proteomics 6:654-666. https://doi.org/10.1002/pmic.200401350
  9. Fothergill-Gilmore, L. A. & Michels, P. A. 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59:105-235. https://doi.org/10.1016/0079-6107(93)90001-Z
  10. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grun. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  11. Harris, J. I. & Waters, M. 1976. Glyceraldehyde-3-phosphate dehydrogenase. In Boyer, P. D. (Ed.) The Enzymes. 3rd ed. Academic Press, New York, pp. 1-49.
  12. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.
  13. Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396. https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  14. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  15. Kim, G. H., Shim, J. B., Klochkova, T. A., West, J. A. & Zuccarello, G. C. 2008. The utility of proteomics in algal taxonomy: Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) as a model study. J. Phycol. 44:1519-1528. https://doi.org/10.1111/j.1529-8817.2008.00592.x
  16. NCBI. 2011. GenBank. Available from: http//www.ncbi.nlm.nih.gov. Accessed Feb 20, 2011.
  17. O’Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
  18. Seong, K. A, Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  19. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850-858. https://doi.org/10.1021/ac950914h
  20. Sirover, M. A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432:159-184. https://doi.org/10.1016/S0167-4838(99)00119-3
  21. Skovgaard, A. 1996. Engulfment of Ceratium spp. (Dinophyceae) by the thecate photosynthetic dinoflagellate Fragilidium subglobosum. Phycologia 35:490-499. https://doi.org/10.2216/i0031-8884-35-6-490.1
  22. Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  23. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  24. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  25. Wang, D. -Z., Lin, L., Chan, L. L. & Hong, H. -S. 2009. Comparative studies of four protein preparation methods for proteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis. Harmful Algae 8:685-691. https://doi.org/10.1016/j.hal.2009.01.001
  26. Wong, P. -F., Tan, L. -J., Nawi, H. & AbuBakar, S. 2006. Proteomics of the red alga, Gracilaria changii (Gracilariales, Rhodophyta). J. Phycol. 42:113-120. https://doi.org/10.1111/j.1529-8817.2006.00182.x

Cited by

  1. Marine Proteomics: A Critical Assessment of an Emerging Technology vol.75, pp.10, 2012, https://doi.org/10.1021/np300366a
  2. Comparative proteomic studies of a Scrippsiella acuminata bloom with its laboratory-grown culture using a 15 N-metabolic labeling approach vol.67, 2017, https://doi.org/10.1016/j.hal.2017.05.009
  3. An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and CO2 influx vol.25, pp.5, 2013, https://doi.org/10.1007/s10811-013-9975-9
  4. Marine dinoflagellate proteomics: Current status and future perspectives vol.105, 2014, https://doi.org/10.1016/j.jprot.2014.01.026
  5. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation vol.51, 2013, https://doi.org/10.1016/j.envint.2012.10.007
  6. Mixotrophy in microorganisms: Ecological and cytophysiological aspects vol.49, pp.4, 2013, https://doi.org/10.1134/S0022093013040014
  7. Progress and promise of omics for predicting the impacts of climate change on harmful algal blooms vol.91, pp.None, 2020, https://doi.org/10.1016/j.hal.2019.03.005
  8. Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics vol.13, pp.1, 2011, https://doi.org/10.3390/toxins13010007