DOI QR코드

DOI QR Code

Characterization of the TAK1 gene in Apis cerana cerana(AccTAK1) and its involvement in the regulation of tissue-specific development

  • Meng, Fei (State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University) ;
  • Kang, Mingjiang (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Liu, Li (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Luo, Lu (State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University) ;
  • Xu, Baohua (College of Animal Science and Technology, Shandong Agricultural University) ;
  • Guo, Xingqi (State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University)
  • Received : 2010.12.06
  • Accepted : 2011.01.10
  • Published : 2011.03.31

Abstract

TGF-$\beta$ activated kinase-1 (TAK1) plays a pivotal role in developmental processes in many species. Previous research has mainly focused on the function of TAK1 in model organisms, and little is known about the function of TAK1 in hymenoptera insects. Here, we isolated and characterized the TAK1 gene from Apis cerana cerana. Promoter analysis of AccTAK1 revealed the presence of transcription factor binding sites related to early development. Real-time quantitative PCR and immunohistochemistry experiments revealed that AccTAK1 was expressed at high levels in fourth instar larvae, primarily in the abdomen, in the intestinal wall cells of the midgut and in the secretory cells of the salivary glands. In addition, AccTAK1 expression in fourth instar larvae could be dramatically induced by treatment with pesticides and organic solvents. These observations suggest that AccTAK1 may be involved in the regulation of early development in the larval salivary gland and midgut.

Keywords

References

  1. Rodriguez, M. C., Petersen, M. and Mundy, J. (2010)Mitogen-activated protein kinase signaling in plants.Annu. Rev. Plant Biol. 61, 621-649. https://doi.org/10.1146/annurev-arplant-042809-112252
  2. Shim, J. H., Greenblatt, M. B., Xie, M., Schneider, M. D.,Zou, W., Zhai, B., Gygi S. and Glimcher, L. H. (2009)TAK1 is an essential regulator of BMP signaling incartilage. EMBO J. 28, 2028-2041. https://doi.org/10.1038/emboj.2009.162
  3. Jadrich, J. L., O'Connor, M. B. and Coucouvanis, E.(2006) The $TGF{\beta}$ activated kinase TAK1 regulates vasculardevelopment in vivo. Development 133, 1529-1541. https://doi.org/10.1242/dev.02333
  4. Yamaguchi, K., Shirakabe, K., Shibuya, H., Irie, K., Oishi,I., Ueno, N., Taniguchi, T., Nishida, E. and Matsumoto, K.(1995) Identification of a member of the MAPKKK familyas a potential mediator of TGF-beta signal transduction.Science 270, 2008-2011. https://doi.org/10.1126/science.270.5244.2008
  5. Gotoh, I., Adachi, M. and Nishida, M. (2001) Identificationand characterization of a novel MAP kinase kinasekinase. MLTK. J. Biol. Chem. 276, 4276-4286. https://doi.org/10.1074/jbc.M008595200
  6. Brown, K., Vial, S. C., Dedi, N., Long, J. M., Dunster, N. J.and Cheetham, G. M. (2005) Structural basis for the interactionof TAK1 kinase with its activating protein TAB1. J.Mol. Biol. 354, 1013-1020. https://doi.org/10.1016/j.jmb.2005.09.098
  7. Sayama, K., Hanakawa, Y., Nagai, H., Shirakata, Y., Dai,X., Hirakawa, S., Tokumaru, S., Tohyama, M., Yang, L.,Sato, S., Shizuo, A. and Hashimoto, K. (2006) Transforminggrowth $factor-{\beta}-activated$ kinase 1 is essential for differentiationand the prevention of apoptosis in epidermis.J. Biol. Chem. 281, 22013-22020. https://doi.org/10.1074/jbc.M601065200
  8. Mihaly, J., Kockel, L., Gaengel, K., Weber, U., Bohmann,D. and Mlodzik, M. (2001) The role of the DrosophilaTAK homologue dTAK during development. Mech. Dev.102, 67-79. https://doi.org/10.1016/S0925-4773(01)00285-4
  9. Delaney, J. R. and Mlodzik, M. (2006) TGF-beta activatedkinase-1: new insights into the diverse roles of TAK1 indevelopment and immunity. Cell Cycle 5, 2852-2855. https://doi.org/10.4161/cc.5.24.3558
  10. Shibuya, H., Iwata, H., Masuyama, N., Gotoh, Y., Yamaguchi,K., Irie, K., Matsumoto, K., Nishida, E. and Ueno,N. (1998) Role of TAK1 and TAB1 in BMP signaling inearly Xenopus development. EMBO J. 17, 1019- 1028. https://doi.org/10.1093/emboj/17.4.1019
  11. Takatsu, Y., Nakamura, M., Stapleton, M., Danos, M. C.,Matsumoto, K., O'Connor, M. B., Shibuya, H. and Ueno,N. (2000) TAK1 participates in c-Jun N-terminal kinasesignaling during Drosophila development. Mol. Cell Biol.20, 3015-3026. https://doi.org/10.1128/MCB.20.9.3015-3026.2000
  12. Franco, R., Sanchez-Olea, R., Reyes-Reyes, E. M. andPanayiotidis, M. I. (2009) Environmental toxicity, oxidativestress and apoptosis: menage a trois. Mutat. Res. 674,3-22. https://doi.org/10.1016/j.mrgentox.2008.11.012
  13. Li, H. L., Zhang, Y. L., Gao, Q. K., Cheng, J. A. and Lou,B. G. (2008) Molecular identification of cDNA, immunolocalization,and expression of a putative odorant-binding protein from an Asian honey bee, Apis ceranacerana. J. Chem. Ecol. 34, 1593-1601. https://doi.org/10.1007/s10886-008-9559-3
  14. Xu, P., Shi, M. and Chen, X. X. (2009) Antimicrobial peptideevolution in the Asiatic honey bee Apis cerana. PLoSOne 4, e4239 https://doi.org/10.1371/journal.pone.0004239
  15. von Kalm, L., Crossgrove, K., von Seggern, D., Guild, G.M. and Beckendorf, S. K. (1994) The Broad-Complex directlycontrols a tissue-specific response to the steroid hormoneecdysone at the onset of Drosophila metamorphosis.EMBO J. 13, 3505-3516.
  16. Gogos, J. A., Hsu, T., Bolton, J. and Kafatos, F. C. (1992)Sequence discrimination by alternatively spliced isoformsof a DNA binding zinc finger domain. Science 257,1951-1955. https://doi.org/10.1126/science.1290524
  17. Rorth, P. (1994) Specification of C/EBP function duringDrosophila development by the bZIP basic region. Science266, 1878-1881. https://doi.org/10.1126/science.7997882
  18. Stanojevic, D., Hoey, T. and Levine, M. (1989) Sequence-specificDNA-binding activities of the gap proteins encodedby hunchback and Krüppel in Drosophila. Nature341, 331-335. https://doi.org/10.1038/341331a0
  19. Dempsey, C. E., Sakurai, H., Sugita, T. and Guesdon, F.(2000) Alternative splicing and gene structure of the transforminggrowth factor ${\beta}-activated$ kinase 1. Biochim.Biophys. Acta. 1517, 46-52. https://doi.org/10.1016/S0167-4781(00)00258-X
  20. Jadrich, J. L., O'Connor, M. B. and Coucouvanis, E. (2003)Expression of TAK1, a mediator of $TGF-{\beta}$ and BMP signaling,during mouse embryonic development. Gene Expr.Patterns 3, 131-134. https://doi.org/10.1016/S1567-133X(03)00012-7
  21. Silva-Zacarin, E. C., Taboga, S. R. and Silva de Moraes, R.L. (2008) Nuclear alterations associated to programmedcell death in larval salivary glands of Apis mellifera(Hymenoptera: Apidae). Micron 39, 117-127. https://doi.org/10.1016/j.micron.2006.12.001
  22. Silva-Zacarin, E. C., Silva de Moraes, R. L. and Taboga, S.R. (2003) Silk formation mechanisms in the larval salivaryglands of Apis mellifera (Hymenoptera: Apidae). J. Biosci.28, 753-764. https://doi.org/10.1007/BF02708436
  23. Sehnal, F. and Akai, H. (1989) Insect silk glands: theirtypes, development and function, and effects of environmentalfactors and morphogenetic hormones on them. Int.J. Insect Morphol. Embryol. 19, 79-132.
  24. Meng, F., Zhang, L., Kang, M., Guo, X. and Xu, B. (2010)Molecular characterization, immunohistochemical localizationand expression of a ribosomal protein L17 genefrom Apis cerana cerana. Arch. Insect Biochem. Physiol.75, 121-138. https://doi.org/10.1002/arch.20386

Cited by

  1. Identification and abiotic stress response of a glutamine synthetase gene (AccGS) from the Asiatic honeybee, Apis cerana cerana (Hymenoptera: Apidae) vol.111, pp.1, 2014, https://doi.org/10.14411/eje.2014.001
  2. Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: Molecular cloning and expression analysis after Ichthyophthirius multifiliis infection vol.34, pp.6, 2013, https://doi.org/10.1016/j.fsi.2013.03.003
  3. Molecular characterization and immunohistochemical localization of a mitogen-activated protein kinase, Accp38b, from Apis cerana cerana vol.45, pp.5, 2012, https://doi.org/10.5483/BMBRep.2012.45.5.293
  4. A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana vol.103, pp.5-6, 2016, https://doi.org/10.1007/s00114-016-1362-3
  5. A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress vol.18, pp.4, 2013, https://doi.org/10.1007/s12192-013-0406-2
  6. The Wisdom of Honeybee Defenses Against Environmental Stresses vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00722
  7. Molecular Characterization, Expression Profiles, and Immunostimulation Responses of TRAF6 and TAK1 in Japanese Flounder (Paralichthys olivaceus) vol.18, pp.1, 2019, https://doi.org/10.1007/s11802-019-3683-2