Abstract
Property auctions have become a new method for real estate investment because the property auction market grows in tandem with the growth of the real estate market. This study focused on the statistical model for predicting bid price rates which is the main index for participants in the real estate auction market. For estimating the monthly bid price rate, we proposed a new method to make up for the mean of regions and terms as well as to reduce the prediction error using a decision tree analysis. We also proposed a linear regression model to predict a bid price rate for individual auction property. We applied the proposed model to apartment auction property and tried to predict the bid price rate as well as categorize individual auction property into an auction grade.
부동산 경매는 최근 새로운 부동산 투자방법 가운데 하나로 자리잡고있다. 이는 부동산 시장의 성장과 더불어 부동산 경매 시장 또한 증가하고 있는 추세에 기인한다 할 수 있다. 본 연구는 부동산 경매에 참여하는 사람 및 기관들에게 가장 중요한 지표라 할 수 있는 낙찰률의 변화를 설명하고 예측하는 모형을 구축하고자 하였다. 월별 평균 낙찰률을 예측하기 위하여 단순한 지역별, 기간별 평균값을 보완하고 의사결정나무 분석을 이용하여 예측오차를 보정하는 방법을 제안하였고 선형회귀모형을 이용하여 개별 경매 물건별 낙찰률을 예측하기 위한 모형을 구축하였다. 구축된 모형은 전국 아파트 경매 물건에 적용하여 예측 모형을 구현하였으며 그 응용방법으로 예측결과에 대한 등급화를 함께 수행하였다.