Abstract
Bootstrap is a resampling technique to find an estimate of parameters or to evaluate the estimate. This technique has been used in estimating parameters in linear model(LM) and generalized linear model(GLM). In this paper, we explore the possibility of applying Bootstrapping Residuals, Pairs, and an Estimating Equation that are most widely used in LM and GLM to the generalized estimating equation(GEE) algorithm for modelling repeatedly measured regression data sets. We compared three bootstrapping methods with coefficient and standard error estimates of GEE models from one simulated and one real data set. Overall, the estimates obtained from bootstrap methods are quite comparable, except that estimates from bootstrapping pairs are somewhat different from others. We conjecture that the strange behavior of estimates from bootstrapping pairs comes from the inconsistency of those estimates. However, we need a more thorough simulation study to generalize it since those results are coming from only two small data sets.
본 논문에서는 일반화추정방정식(GEE)모형에 대한 부스트랩 방법의 적용에 대하여 살펴본다. 다양한 부스트랩 방법들 중 GEE모형에 적용이 가능한 잔차, 쌍 및 점수함수 부스트랩 방법을 가상 및 실제 자료들에 적용한 결과 회귀계수들에 대한 추정치와 표준오차가 점근값들과 차이를 보이는 것으로 나타났다. 따라서 표본수가 크지 않은 경우 부스트랩 방법을 통하여 GEE모형에서의 회귀계수에 대한 추정치화 표준편차를 구하는 것이 효과적임을 알 수 있다.