Abstract
In this paper, we propose a defense NPC control model in the soccer game by applying the Decision Tree learning algorithm. The proposed model extracts the direction patterns and the action patterns generated by many soccer game users, and applies these patterns to the Decision Tree learning algorithm. Then, the proposed model decides the direction and the action according to the learned Decision Tree. Experimental results show that the proposed model takes some time to learn the Decision Tree while the proposed model takes 0.001-0.003 milliseconds to decide the direction and the action based on the learned Decision Tree. Therefore, the proposed model can control NPC in the soccer game system in real time. Also, the proposed model achieves higher accuracy than a previous model (Letia98); because the proposed model can utilize current state information, its analyzed information, and previous state information.
본 논문에서는 결정트리 학습 알고리즘을 활용한 축구 게임 수비 NPC 제어 방법을 제안한다. 제안하는 방법은 실제 게임 사용자들의 이동 방향 패턴과 행동 패턴을 추출하여 결정트리학습 알고리즘에 적용한다. 그리고 학습된 결정트리를 바탕으로 NPC의 이동방향과 행동을 결정한다. 실험결과 제안하는 방법은 결정트리 학습에 시간이 다소 걸리지만, 학습된 결정트리를 바탕으로 이동방향이나 행동을 결정하는 시간은 약 0.001-0.003 ms(밀리초)가 소요되어 실시간으로 NPC를 제어할 수 있었다. 또한, 제안하는 방법은 현재 상태 정보 뿐만 아니라 이를 분석한 관계정보, 이전 상태 정보도 함께 활용하므로, 기존방법인 (Letia98)에 비해 이동방향 결정시 높은 정확도를 나타냈다.