DOI QR코드

DOI QR Code

Monthly Variation of Phytoplankton Community in Asan Bay, Korea

아산만 식물플랑크톤 군집의 월 변동

  • Jeong, Byung-Kwan (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • Sin, Yong-Sik (Division of Ocean System Engineering, Mokpo Maritime National University) ;
  • Yang, Sung-Ryull (Department of Environmental Engineering, College of Engineering Kwangju University) ;
  • Park, Chul (Department of Oceanography, Chungnam National University)
  • 정병관 (목포해양대학교 해양시스템공학부) ;
  • 신용식 (목포해양대학교 해양시스템공학부) ;
  • 양성렬 (광주대학교 공과대학 환경공학과) ;
  • 박철 (충남대학교 자연과학대학 해양학과)
  • Received : 2011.06.10
  • Accepted : 2011.11.25
  • Published : 2011.11.30

Abstract

Phytoplankton community composition was investigated in the Asan Bay (South) Korea. Water samples were collected monthly from five stations during January to December 2008. Phytoplankton blooms were observed in February and in August but the location of the bloom varied with the sampling time. A total of 134 phytoplankton species from seven classes (Bacillariophyceae, Chlorophyceae, Chrysophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae) were observed. Diatoms were dominant in all stations through-out the year except in summer when dinoflagellates were numerous and highly distributed within the outer bay rather than in the river mouth. Dominant and subdominant species were composed mostly of diatoms but were replaced by dinoflagellates in June and July. Results of ecological index showed that the diversity indices were increasing toward outer bay but the dominance indices showed a reverse trend.

아산만 식물플랑크톤의 군집구조 변화를 파악하기 위하여 총 5개 정점을 선정하여 2008년 1월부터 12월까지 월별 조사를 실시하였다. 조사기간 동안 두 번에 걸쳐(2월, 8월) 식물플랑크톤 대발생이 발생하였고, 시기에 따라 발생 위치가 다르게 나타났다. 조사기간 동안 총 7개 분류군(Bacillariophyceae, Chlorophyceae, Chrysophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae) 134종이 출현하였다. 대체로 규조류(Bacillariophyceae)가 우세한 분포를 보였으나 하계에는 와편모조류가 증가하였고 내측해역보다는 외측해역에서 개체밀도가 높게 나타났다. 우점종과 차우점종 역시 규조류인 경우가 많았으나 6월부터 7월에는 와편모조류가 우점 및 차우점종으로 나타났다. 생태지수 분석결과 종다양성지수는 내측에서 외측으로 갈수록 높았으며 우점도지수는 상반된 결과를 나타내었다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 강연식, 최중기, 엄희문, 2003. 고리 월성, 울진과 영광 연안해역에서 식물플랑크톤 군집의 생태학적 특성III. 우점종분포와 환경 요인들. 조류학회지, 18: 29−47.
  2. 강연식, 최중기, 엄희문, 2003. 고리 월성, 울진과 영광 연안해역에서 식물플랑크톤 군집의 생태학적 특성III. 우점종분포와 환경 요인들. 조류학회지, 18: 29−47.
  3. 문창호, 최혜지, 1991. 낙동강 하구 환경특성 및 식물플랑크톤의 군집구조에 관한 연구. 한국해양학회지, 26(2): 144−154.
  4. 신용식, 서호영, 현봉길, 2005. 해수층의 연분 변화가 일차생산자와 상위소비자의 크기구조에 미치는 영향. 한국해양학회지, 10(2): 113−123.
  5. 심재형, 신윤근, 이원호, 1991. 만경강 하류의 환경과 식물플랑크톤 군집. 한국육수학회지, 24(1): 45−54.
  6. 오석진, 윤양호, 2004. 여수해만에서 분리한 유독 와편모조류, Gymnodinium catenatum(Graham)의 성장에 미치는 수온, 염분과 광 조건. Algae, 19(4): 293−301. https://doi.org/10.4490/ALGAE.2004.19.4.293
  7. 이상현, 신용식, 양성렬, 박철, 2005. 아산만 식물플랑크톤의 계절별 군집 분포 특성. Ocean and Polar Research, 27(2): 149−159. https://doi.org/10.4217/OPR.2005.27.2.149
  8. 이창규, 김형철, 이삼근, 정창수, 김학균, 임월애, 2001. 남해안 연안에서 적조생물, Cochlodinium polykrikoides, Gyrodinium impudicum, Gymnodinium catenatum의 출현상황과 온도, 염분, 조도 및 영양염류에 따른 성장특성. J. Korean Fish. Soc., 34(5): 536−544.
  9. 이향화, 신용식, 양성렬, 박철, 2007. 아산만 연안하구 식물플랑크톤의 2006년 하계 종조성 변화. 한국해양학회지, 12(3): 200−210.
  10. 조창환, 허성희, 1988. 낙동강 하구 부근의 식물플랑크톤 군집구조와 분포. 해양연구, 10: 39−45.
  11. 현봉길, 신용식, 박철, 양성렬, 2006. 아산만 식물플랑크톤 크기구조의 시공간적 변동. 한국환경생물학회, 24(1): 7−18.
  12. Bold, H.C. and M.J. Wynne, 1985. Introduction to the Algae. 2nd Ed. Prentice-Hall Inc. Englwood Cliffs, New Jersey., pp. 720.
  13. Boyer, J.P., R.R. Christian and D.W. Stanley, 1993. Patterns phytoplankton primary productivity in the Neuse River estuary, North Carolina, USA. Marine Ecology Progress Series, 97: 287−297. https://doi.org/10.3354/meps097287
  14. Brook, A.J., 1965. Planktonic algae as indicators of lake types, with special reference to the Desmidiaceae. Limnology and Oceanography, 10: 403−411. https://doi.org/10.4319/lo.1965.10.3.0403
  15. Chapman, V.J., 1968. The Algae. Macmillan London, Melbourne, Toronto St Martis Press. New York, p. 472.
  16. Cloern, J.E., A.E. Alpine, B.E. Cole, R.L.J. Wong, J.F. Arthur and M.D. Ball, 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuarine Coastal and shelf Science, 16: 415−429. https://doi.org/10.1016/0272-7714(83)90103-8
  17. Dodge J.D., 1975. The fine structure of algal cells. Academic Press. Inc. London, pp. 261.
  18. Fehling, J., K. Davidson, and S.S. Bates, 2005. Growth dynamics of non-toxic Pseudo-nitzschia delicatissima and toxic P. seriata (Bacillariophyceae) under simulated spring and summer photoperiods. Harmful Algae, 4(4): 763−769. https://doi.org/10.1016/j.hal.2004.11.002
  19. Fisher, T.R., L.W. Jr. Harding, D.W. Stanley and L.G. Ward, 1988. Phytoplankton, nutrient and turbidity in the Chesapeake, Delaware and Hudson estuaries. Estuarine Coastal and Shelf Science, 27: 61−93. https://doi.org/10.1016/0272-7714(88)90032-7
  20. Gallegos, C.L., T.E. Jordan and D.L. Correll., 1992. Eventscale response of phytoplankton to watershed inputs in a subestuary: Timimg, magnitude, and location of blooms. Limnology and Oceanography, 37(4): 813−825. https://doi.org/10.4319/lo.1992.37.4.0813
  21. Harper D., 1992. Eutrophication of freshwater. Principles, problems and restoration. Chapman and Hall, London, p. 329.
  22. Hellawell, J.M., 1986. Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, p. 546.
  23. James, A., 1979. The value of biological indicators in relation to other parameters of water quality. In: James A. and L. Evison(eds.). Biological Indicators of Water Quality. John Wiley and Sons, New York, pp. 1−16.
  24. Loftus, M.E., D.V.S. Rao and H.H. Seliger, 1972. Growth and dissipation of phytoplankton in Chesapeake bay. Chesapeake Science, 13: 282−299. https://doi.org/10.2307/1351112
  25. Malone, T.C. and M.B. Chervin, 1979. The production and fate of phytoplankton size fractions in the plume of Hudson river. New York Bight. Limnol. Oceanogr., 24: 683−696. https://doi.org/10.4319/lo.1979.24.4.0683
  26. Malone, T.C., P.J. Neale and D. Boardman, 1980. Influences of estuarine circulation on the distribution and biomass of phytoplankton size fractions. In Estuarine perspectives, edited by V. Kennedy, Academic Press, New York, pp. 249−262.
  27. Malone, T.C., L.H. Crocker, S.E. Pike and B.W. Wendler, 1988. Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Marine Ecology Progress Series, 48: 235−249. https://doi.org/10.3354/meps048235
  28. Mohamad, S., T. Takatani, O. Arakawa and T. Noguchi, 2002. Effects of temperature on the PSP-excreting activity of toxic dinoflagellate Gymnodinium catenatum. Fisheries Science, 68(1): 625−626. https://doi.org/10.2331/fishsci.68.sup1_625
  29. Parsons T.R., Y. Maita and C.M. Lalli., 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, pp. 22−25.
  30. Pennock J.R., 1985. Chlorophyll distributions in the Delaware estuary: Regulation by light-limitations. Estuarine, Coastal and Shelf Science, 21: 711−725. https://doi.org/10.1016/0272-7714(85)90068-X
  31. Reynolds, C.S., S.W. Wiseman, B.M. Godfrey and C. Butterwick., 1983. Some Effects of artificial mixing on the dynamics of the phytoplankton populations in large liminetic enclosures. J. Plankton Res., 5: 203−234. https://doi.org/10.1093/plankt/5.2.203
  32. Sin, Y.S., R.L. Wetzel and I.C. Anderson, 1999. Spatioal and temporal characteristics of phytoplankton dynamics in the York River estuary, Virginia: analyses of long-term data. Estuaries, 22: 260− 275. https://doi.org/10.2307/1352982
  33. Sin, Y.S. and J. Kim, 2003. Relative importance of bottom-up vs. top-down controls on size-structured phytoplankton dynamics in a freshwater ecosystem I. temporal and spatial variations of size structure. Korean J. Limmol., 36(4): 403−412.
  34. Smayda, T.J., 1980. Phytoplankton species succession. In I. Morris (Ed.), The Physiological Ecology of Phytoplankton, Blackwell, Oxford, pp. 483−570.
  35. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan., 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106: 433−471.
  36. Sournia, A., 1978. Phytoplankton manual. In: Monographs on oceanographic Methodology 6. ed. by Sournia, A., UNESCO, Paris.
  37. Sundbeack K., B. Joensseon, P. Nilsson and I. Lindstroem, 1990. Impact of accumulating drifting macroalgae on a shallow-water sediment system: An experimental study. Mar. Ecol. Prog. Ser., 58(3): 261−274.
  38. Wafer M.V.M., P.I. Le Corre and J.L. Birrien, 1983. Nutrients and primary production in permanently well-mixed temperate coastal water. Estuarine Coastal and Shelf Sci., 17: 431−446. https://doi.org/10.1016/0272-7714(83)90128-2
  39. Watanabe T. 1962. On the biotic index of water pollution based upon the species number of Bacillariophyceae in the Tokoro River in Hokkaido (in Japanese). Jap. Jour. Eco., 12: 216−222.
  40. Wolfe, D.A. and B. Kjerfve, 1986. Estuarine variability: an overview. In estuarine variability, D.A. Wolfe ed. Academic, Orlando, FL, pp. 3−17.

Cited by

  1. Long-term Variations of Phytoplankton Community in Coastal Waters of Kyoungju City Area vol.28, pp.5, 2016, https://doi.org/10.13000/JFMSE.2016.28.5.1417
  2. The Assessment of Aquatic Ecosystem Health, Based on Phytoplankton Indicators and Quality Parameters, in the Seawater Zone of Geum River Estuary vol.21, pp.3, 2018, https://doi.org/10.7846/JKOSMEE.2018.21.3.228
  3. Semidiurnal Dynamics of Phytoplankton Size Structure and Taxonomic Composition in a Macrotidal Temperate Estuary vol.38, pp.2, 2011, https://doi.org/10.1007/s12237-014-9838-x
  4. 영산강 하구의 식물플랑크톤 군집 및 수 환경: 해수역의 주별 변동 vol.40, pp.4, 2011, https://doi.org/10.4217/opr.2018.40.4.191