DOI QR코드

DOI QR Code

Deblocking Filter Based on Edge-Preserving Algorithm And an Efficient VLSI Architecture

경계선 보존 알고리즘 기반의 디블로킹 필터와 효율적인 VLSI 구조

  • 트풍퀑빈 ;
  • 김지훈 (전남대학교 전자컴퓨터공학과 정보통신 시스템온칩 연구실) ;
  • 김영철 (전남대학교 전자컴퓨터공학과 정보통신 시스템온칩 연구실)
  • Received : 2011.11.21
  • Published : 2011.11.30

Abstract

This paper presents a new edge-preserving algorithm and its VLSI architecture for block artifact reduction. Unlike previous approaches using block classification, our algorithm utilizes pixel classification to categorize each pixel into one of two classes, namely smooth region and edge region, which are described by the edge-preserving maps. Based on these maps, a two-step adaptive filter which includes offset filtering and edge-preserving filtering is used to remove block artifacts. A pipelined VLSI architecture of the proposed deblocking algorithm for HD video processing is also presented in this paper. A memory-reduced architecture for a block buffer is used to optimize memory usage. The architecture of the proposed deblocking filter is prototyped on FPGA Cyclone II, and then we estimated performance when the filter is synthesized on ANAM 0.25 ${\mu}m$ CMOS cell library using Synopsys Design Compiler. Our experimental results show that our proposed algorithm effectively reduces block artifacts while preserving the details.

본 논문은 새로운 경계선 보존 알고리즘을 이용하여 블록화 현상을 제거하는 디블로킹 필터와 HD해상도의 실시간 영상처리가 가능한 디블로킹 필터의 VLSI구조를 제안한다. 기존의 블록 분류 기반의 접근 방법과 달리 제안된 알고리즘은 픽셀 분류 기반 접근을 사용한다. 또한 제안된 경계선 보존 맵은 픽셀을 경계선 영역과 평탄 영역으로 분류하며, 블록화 현상 제거에 사용되는 오프셋 필터와 경계선 보존 필터의 기반이 된다. 이를 바탕으로 제안된 디블로킹 필터의 VLSI구조는 고연산량 처리를 위하여 블록 전체에 파이프라인 기법을 적용하였다. 또한 블록 버퍼를 위한 메모리 절감 구조는 메모리의 사용을 최적화 시킨다. 본 필터는 VHDL을 이용한 설계를 통하여 CycloneII FPGA상에서 구현된 구조의 동작을 검증 후, Synopsys의 Design Compiler와 ANAM 0.25 ${\mu}m$ CMOS cell library로 합성하여 칩으로 구현하였을 때의 성능을 예측하였다. 제안된 알고리즘의 실험 결과는 세밀한 영상성분을 보존하면서 효과적으로 블록화 현상을 제거하며, 픽셀 분류 기반에서 제안된 알고리즘은 블록 분류 기반보다 PSNR 성능이 우수함을 보였다.

Keywords

References

  1. "Generic Coding of Moving Pictures and Associated Audio Infonnation," Part 2: Video, ISO/IEC 13818-2, Nov., 1994.
  2. MPEG Video Group, "MPEG-4 Video Verification Model Version 8.0," ISO/IEC JTC1/SC29jWGll N1796, July, 1997.
  3. Joint Video Team of ITU-T and ISO/IEC ITC 1, "Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification," (ITU-T Rec. H.264 -ISO/IEC 14496-10 AVC), May, 2003.
  4. J. Kim, M. Choi, and J. Jeong, "Reduction of Blocking Artifacts for HDTV Using Offset-and-Shift Technique," IEEE Trans. Consum. Electron., Vol,53, No.4, pp.1736- 1743, Nov., 2007.
  5. L. Shao and I. Kirenko, "Coding Artifact Reduction Based on Local Entropy Analysis," IEEE Trans, Consum, Electron., Vol.53, No.2, pp.691-696. May, 2007. https://doi.org/10.1109/TCE.2007.381747
  6. A.Z. Averbuch, A. Schclar, and D.L. Donoho, "Deblocking of Block-Transfonn Compressed Images Using Weighted Sums of Symmetrically Aligned Pixels," IEEE Trans, Image Process.,Vol.14, No.2, pp.200-212. Feb., 2005. https://doi.org/10.1109/TIP.2004.840688
  7. T. Chen, H.R. Wu, and B. Qiu, "Adaptive Postfiltering of Transfonn Coefficients for the Reduction of Blocking Artifacts," IEEE Trans. Circuits Syst. Video Technol., Vol. 11, No.5, pp.594-602. May, 2001. https://doi.org/10.1109/76.920189
  8. Z. Li and E.J. Delp, "Block Artifact Reduction Using a Transfonn-Domain Markov Random Field Model," IEEE Trans. Cir. Sys. Video Technol., Vol.15, No.12, pp.1583-1593. Dec., 2005, https://doi.org/10.1109/TCSVT.2005.858613
  9. J.J. Zou and H. Yan, "A Deblocking Method for BDCT Compressed Images Based on Adaptive Projections," IEEE Trans. Cir. Sys. Video Technol., Vol.15, No.3, pp.430-435. Mar., 2005. https://doi.org/10.1109/TCSVT.2004.842610
  10. G.R Kwon et aL, "An Efficient POCS-Based Post-Processing Technique Using Wavelet Transfonn in HDTV," IEEE Trans. Cons, Elec. Vol.51, No.4, pp.1283-1290. Nov., 2005, https://doi.org/10.1109/TCE.2005.1561857
  11. Y. Zhao, G. Cheng, and S. Yu, "Postprocessing Technique for Blocking Artifacts Reduction in DCT Domain," Electron. Lett, Vol. 40, No.19, pp.1175-1176, Sept., 2004. https://doi.org/10.1049/el:20046044
  12. Y. Luo and R.K. Ward, "Removing the Blocking Artifacts of Block-Based DCT Compressed Images," IEEE Trans, Image Process., Vol.12, No.7, pp.838-842. JuL, 2003. https://doi.org/10.1109/TIP.2003.814252
  13. H. Choi and T. Kim, "Blocking-Artifact Reduction in Block-Coded Images Using Wavelet-Based Subband Decomposition," IEEE Trans. Cir. Sys. Video Technol., Vol.10, No.5, pp.801-805. Aug., 2000, https://doi.org/10.1109/76.856457
  14. N.C. Kim et al., "Reduction of Blocking Artifact in Block-Coded Images Using Wavelet Transfonn," IEEE Trans. Cir. Sys. Video Technol., Vol.8, No.3, pp.253-257. June, 1998. https://doi.org/10.1109/76.678618
  15. C. Tomasi and R Manduchi, "Bilateral Filtering for Gray and color Images," Proc. IEEE Int. Conf. Comput. Vision, pp.59-66. 1998,
  16. CT. Johnston, KT. Gribbon, and D.G. Bailey, "Implementing Image Processing Algorithms on FPGAs," Proc. Eleventh Electronics New Zealand Conf., Palmerston North, New Zealand, pp.118-123. Nov., 2004.
  17. Y.W. Huang et ai., "Architecture Design for Deblocking Filter in H.264/ JVT/A VC," in Proc. IEEE Int. Conf. Multimedia Expo, MD, pp.I-693-I-696.2003.
  18. T. M. Liu et ai., "A Memory-Efficient Deblocking Filter for H.264/AVC Video Coding," Proc. IEEE Int. Symp. Circuits Syst., Kobe, Japan, pp.2140-2143. 2005.