DOI QR코드

DOI QR Code

Distributed Throughput-Maximization Using the Up- and Downlink Duality in Wireless Networks

무선망에서의 상하향 링크 쌍대성 성질을 활용한 분산적 수율 최대화 기법

  • 박정민 (연세대학교 전기전자공학과 무선자원최적화연구실) ;
  • 김성륜 (연세대학교 전기전자공학과)
  • Received : 2011.11.04
  • Published : 2011.11.30

Abstract

We consider the throughput-maximization problem for both the up- and downlink in a wireless network with interference channels. For this purpose, we design an iterative and distributive uplink algorithm based on Lagrangian relaxation. Using the uplink power prices and network duality, we achieve throughput-maximization in the dual downlink that has a symmetric channel and an equal power budget compared to the uplink. The network duality we prove here is a generalized version of previous research [10], [11]. Computational tests show that the performance of the up- and downlink throughput for our algorithms is close to the optimal value for the channel orthogonality factor, ${\theta}{\in}$(0.5, 1]. On the other hand, when the channels are slightly orthogonal (${\theta}{\in}$(0, 0.5]), we observe some throughput degradation in the downlink. We have extended our analysis to the real downlink that has a nonsymmetric channel and an unequal power budget compared to the uplink. It is shown that the modified duality-based approach is thoroughly applied to the real downlink. Considering the complexity of the algorithms in [6] and [18], we conclude that these results are quite encouraging in terms of both performance and practical applicability of the generalized duality theorem.

본 논문에서는 사용자들 간의 간섭이 존재하는 무선망에서 상하향 링크의 수율 최대화를 동시에 고려한다. 상향 링크에서는 라그랑지안 완화기법에 기반으로 하는 분산적이고 반복적인 알고리즘을 제안하다. 상향 링크에서의 라그랑지 곱수와 네트워크 쌍대성 성질을 이용하여 채널 이득과 최대 전력 제약이 상향 링크와 동일한 듀얼 하향 링크에서의 수율 최대화를 얻을 수 있다. 본 논문에서 증명한 네트워크 쌍대성 성질은 기존의 연구에 비해 보다 일반적인 형태를 가진다. 또한, 모의실험 결과는 채널의 상관 계수가 ${\theta}{\in}$(0.5, 1] 일 때, 상하향 링크에서 제안된 기법들이 각각 최적값에 근접하다는 것을 보여준다. 반면에 채널의 상관 계수가 낮을 때 (${\theta}{\in}$(0, 0.5]), 하향 링크에서의 성능 열화를 관찰할 수 있다. 네트워크 쌍대성 성질은 상향 링크에 비해 채널 이득과 최대 전력 제약이 다른 실제 하향 링크로 확장된다. 이러한 쌍대성 성질에 기반으로 하는 기법은 실제 하향 링크에서도 충분히 적용될 수 있음이 모의실험 결과로 보여진다. 기존에 제안된 알고리즘의 복잡도를 고려하였을때, 본 논문의 결과는 일반화된 네트워크 쌍대성 성질의 성능과 실제 적용면에서 상당히 유용하다고 할 수 있다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. A. Jalali, R. Padovani and R. Pankaj, "Data throughput of CDMA-HDR a high efficiencyhigh data rate personal communication wireless system," in Proc. IEEE VTC-Spring, pp.1854-1858, 2000.
  2. K. L. Baum, T. A. Kostas, P. J. Sartori and B. K. Classon, "Performance characteristics of cellular systems with different link adaptation strategies," IEEE Trans. Veh. Technol., 52 (6), pp.1497-1507, 2003. https://doi.org/10.1109/TVT.2003.819445
  3. M.A. Haleem and R. Chandramouli, "Adaptive downlink scheduling and rate selection: a cross-layer design," IEEE J. Sel. Areas Commun., 23 (6), pp.1287-1297, 2005. https://doi.org/10.1109/JSAC.2005.845636
  4. M. Bertinelli and E. Malkamaki, "WCDMA enhanced uplink: HSUPA link level performance study," in Proc. IEEE PIMRC, 2005.
  5. S.-L. Kim, Z. Rosberg and J. Zander, "Combined power control and transmission rate selection in cellular Networks," in Proc. IEEE VTC-Fall, 1999.
  6. K. Kumaran and L. Quian, "Uplink scheduling in CDMA packet-data systems," Wireless Networks, 12 (1), pp.33-43, 2006. https://doi.org/10.1007/s11276-006-6148-7
  7. S.-J. Oh and A. C. K. Soong, "QoS-constrained information-theoretic sum capacity of reverse link CDMA systems," IEEE Trans. Wireless Commun., 5 (1), pp.3-7, 2006. https://doi.org/10.1109/TWC.2006.1576517
  8. T. Kastrinogiannis and S. Papavassiliou, "Game theoretic distributed uplink power control for CDMA networks with real-time services," Computer Commun., 32 (2), pp.376-385, 2009. https://doi.org/10.1016/j.comcom.2008.11.010
  9. C. W. Tan, M. Chiang and R. Srikant, "Fast algorithms and performance bounds for sum rate maxmization in wireless networks," in Proc. IEEE INFOCOM, 2009.
  10. S. R. Bhaskaran, S. V. Hanly, N. Badruddin and J. S. Evans, "Maximizaing the sum rate in symmetric networks of interfering links," IEEE Trans. Inform. Theory, 56 (9), pp.4471-4487, 2010. https://doi.org/10.1109/TIT.2010.2054652
  11. M. L. Fisher, "The Lagrangian relaxation method for solving integer programming problem," Management Science, 27(1), pp.1-18, 1981. https://doi.org/10.1287/mnsc.27.1.1
  12. N. Jindal, S. Vishwanath and A. Goldsmith, "On the duality of gaussian multiple-access and broadcast channels," IEEE Trans. Inform. Theory, 50 (5), pp.768-783, 2004. https://doi.org/10.1109/TIT.2004.826646
  13. D. Catrein, L. A. Imhof and R. Mathar, "Power control, capacity, and duality of uplink and downlink in cellular CDMA systems," IEEE Trans. Commun., 52 (10), pp.1777-1785, 2004. https://doi.org/10.1109/TCOMM.2004.836451
  14. J. M. Park and S.-L. Kim, "Distributed throughput-maximization using the up- and downlink duality in wireless networks," in proc. IWCMC, 2007.
  15. J. Mo and S.-L. Kim, "On the optimal downlink power allocation for multi-carrier OFCDM wireless networks," in Proc. IEEE Wireless Telecommun. Symposium, 2006.
  16. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
  17. S. Kim and H. Ahn, "Convergence of a generalized subgradient method for nondifferentiable convex optimization," Mathematical Programming, 50 (1-3), pp.75-80, 1991. https://doi.org/10.1007/BF01594925
  18. W. Yu and R. Lui, "Dual methods for nonconvex spectrum optimization of multicarrier systems," IEEE Trans. Commun., 54 (7), pp.1310-1322, 2006. https://doi.org/10.1109/TCOMM.2006.877962
  19. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont, Massachusetts, 1997.
  20. A. L. Yuille and A. Rangarajan, "The concaveconvex procedure," ACM Neural Computation, 15 (4), pp.915-936, 2003. https://doi.org/10.1162/08997660360581958
  21. F. Berggren and S.-L. Kim, "Energy-efficient control of rate and power in DS-CDMA Systems," IEEE Trans. Wireless Commun., 3 (3), pp.725-733, 2004. https://doi.org/10.1109/TWC.2004.827762