Influence of Polymer Morphology and Dispersibility on Mechanical Properties and Electrical Conductivity of Solution-cast PANI-DBSA/HIPS Blends

용액 캐스팅으로 제조한 PANI-DBSA/HIPS 블렌드에서 분산성 및 모폴로지가 기계적 특성과 전기전도도에 미치는 영향

  • Lee, Jong-Hyeok (Department of Chemistry, The University of Suwon) ;
  • Choi, Sun-Woong (Department of Polymer Science & Engineering, Hannam University) ;
  • Kim, Eun-Ok (Department of Chemistry, The University of Suwon)
  • Received : 2011.04.05
  • Accepted : 2011.05.14
  • Published : 2011.11.25

Abstract

A study has been done to enhance the mechanical properties and processability of electrically conductive polyaniline(PANI) without the polymer's structural alternation. Functionalized acid doped PANI (PANI-DBSA) was prepared by an emulsion polymerization, and dodecylbenzenesulfonic acid (DBSA) played both roles of surfactant and dopant. Also, PANI-DBSA was solution cast blended with high impact polystyrene (HIPS) to produce PANI-DBSA/HIPS blend film. The structure and electrical properties of the conducting polymer blends were observed through UV-vis and FTIR/ATR spectroscopy. A study of the blend was carried by focusing on observation of mechanical and electrical properties based on dispersibility and changes in polymer morphology. The conductivity of the blends was increased by increasing the content of PANI-DBSA, and the sudden increase of conductivity to $3.5{\times}10^{-4}$ S/cm was observed even under a low content of 9 wt%. There was a strong association of continuous network formation with percolation and conductivity in the conducting polymer blends.

전도성고분자 polyaniline(PANI)의 구조 변화없이 전기전도도를 띠면서 가공성과 기계적 특성을 증가시키는 연구를 수행하였다. 기능성 산으로 도핑된 PANI-DBSA는 유화 중합하였고, dodecylbenzenesulfonic acid(DBSA)는 계면활성제와 도펀트 역할을 동시에 하도록 하였다. 이어서 PANI-DBSA를 high impact polystyrene(HIPS)와 용액 캐스팅하여 블렌드 필름을 제조하였다. UV-vis, FTIR/ATR 분광법으로 블렌드 구조와 전기적 특성을 확인하였다. PANI-DBSA/HIPS 블렌드에 관한 연구는 분산성과 모폴로지 변화에 따른 기계적인 특성과 전기적 특성 확인에 중점을 두고 진행하였다. 전기전도도는 PANI-DBSA 함량 증가에 따라 상승하였고, 9 wt% 정도로 낮은 함량에서도 $3.5{\times}10^{-4}$ S/cm로 급격하게 상승하였다. 전도성고분자 블렌드에서 연속적인 고분자 망상구조 형성이 percolation과 전기전도도에 밀접한 연관성이 있었다.

Keywords

References

  1. T. A. Skotheim, Handbook of Conducting Polymers, Marcel Dekker, New York, 1986.
  2. S. Ray, A. J. Easteal, R. P. Cooney, and N R. Edmonds, Mat. Chem. Phys., 113, 829 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.034
  3. S. K. Singh, R. K. Gupta, and R. A. Singh, Synth. Met., 159, 2478 (2009). https://doi.org/10.1016/j.synthmet.2009.08.015
  4. C. C. Liu, B. Y. Lu, J. Yan, J. K. Xu, R. R. Yue, Z. J. Zhu, S. Y. Zhou, X. J. Hu, Z. Zhang, and P. Chen, Synth. Met., 160, 2481 (2009).
  5. H. W. Rhee and C. Y. Kim, Polym. Sci. Tech., 2, 149 (1991).
  6. R. K. Paul, C. K. S. Pillai, and B. R. Mattes, Synth. Met., 27, 114 (2000).
  7. M. T. Nguyen, P. Kasai, J. L. Miller, and A. F. Diaz, Macromolecules, 27, 3625 (1994). https://doi.org/10.1021/ma00091a026
  8. J. C. Chiang and A. G. MacDiarmid, Synth. Met., 13, 193 (1986). https://doi.org/10.1016/0379-6779(86)90070-6
  9. C. L. Gettinger, A. J. Heeger, D. J. Pine, and Y. Cao, Synth. Met., 74, 81 (1995). https://doi.org/10.1016/0379-6779(95)80041-7
  10. D. C. Trivedi and S. K. Dhawan, Synth. Met., 58, 309 (1993). https://doi.org/10.1016/0379-6779(93)91140-W
  11. B. Sanjai, A. Raghunathan, T. S. Natarajan, G. Rangarajan, S. Thomas, P. V. Prabhakaran, and S. Venkatachalam, Phys. Rev. B, 55, 10734 (1997). https://doi.org/10.1103/PhysRevB.55.10734
  12. D. Maccines and L. B. Funt, Synth. Met., 25, 235 (1988). https://doi.org/10.1016/0379-6779(88)90248-2
  13. M. Morita and I. Hashida, J. Appl. Polym. Sci., 41, 1073 (1990). https://doi.org/10.1002/app.1990.070410517
  14. E. Dallas, J. Mater. Sci., 27, 453 (1992).
  15. V. E. Bondarenko, T. S. Zhuravleva, O. N. Efimov, and G. V. Nikolaeva, Synth. Met., 102, 1228 (1999). https://doi.org/10.1016/S0379-6779(98)01433-7
  16. P. Dutta, S. Biswas, M. Ghosh, and S. K. De, Synth. Met., 122, 455 (2001). https://doi.org/10.1016/S0379-6779(00)00588-9
  17. Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 48, 91 (1992). https://doi.org/10.1016/0379-6779(92)90053-L
  18. Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 57, 3514 (1993). https://doi.org/10.1016/0379-6779(93)90468-C
  19. C. Y. Yang, Y. Cao, P. Smith, and A. J. Heeger, Synth. Met., 53, 293 (1993). https://doi.org/10.1016/0379-6779(93)91098-M
  20. W. J. Kim, T. Y. Kim, J. W. Ko, Y. S. Kim, C. M. Park, and K. S. Suh, Trans. KIEE, 53C, 305 (2004).
  21. H. G. Jeoung, D. W. Chung, K. H. Ahn, S. J. Lee, and S. J. Lee, Polymer(Korea), 25, 744 (2001).
  22. G. Dagli, A. S. Argon, and R. E. Cohen, Polymer, 36, 2173 (1995). https://doi.org/10.1016/0032-3861(95)95293-A
  23. M. Kryszewski, Synth. Met., 45, 289 (1991). https://doi.org/10.1016/0379-6779(91)91785-9
  24. X. H. Yin, K. Yoshino, H. Yamamoto, T. Watanuki, I. Isa, S. Nakagawa, and M. Adachi, J. Appl. Phys., 33, 3597 (1994). https://doi.org/10.1143/JJAP.33.3597
  25. R. M. Scarisbrick, J. Phys. D, 6, 2098 (1973). https://doi.org/10.1088/0022-3727/6/17/316
  26. E. Ruckenstein and Y. Sun, Synth. Met., 74, 107 (1995). https://doi.org/10.1016/0379-6779(95)03358-0
  27. S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci., 34, 783 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.003
  28. A. G. MacDiarmid, Y. Min, J. M. Wiesinger, E. J. Oh, E. M. Scherr, and A. J. Epstein, Synth. Met., 55, 753 (1993). https://doi.org/10.1016/0379-6779(93)90147-O
  29. W. R. Salaneck, B. Liedberg, O. Inganäs, R. Erlandsson, I. Lundström, A. G. MacDiarmid, M. Halpern, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst., 121, 191 (1985). https://doi.org/10.1080/00268948508074860
  30. J. Tang, X. Jing, B. Wang, and F. Wang, Synth. Met., 24, 231 (1988). https://doi.org/10.1016/0379-6779(88)90261-5
  31. E. Ruckenstein and S. Yang, Synth. Met., 53, 283 (1993). https://doi.org/10.1016/0379-6779(93)91097-L
  32. Y. P. Mamunya, Y. V. Muzychenko, P. Pissis, E. V. Lebedev, and M. Shut, Polym. Eng. Sci., 42, 90 (2002). https://doi.org/10.1002/pen.10930
  33. Y. Xia, J. M. Wiesinger, and A. G. MacDiarmid, Chem. Mater., 7, 443 (1995). https://doi.org/10.1021/cm00051a002
  34. B. J. Kim, S. G. Oh, M. G. Han, and S. S. Im, Synth. Met., 122, 297 (2001). https://doi.org/10.1016/S0379-6779(00)00304-0
  35. M. G. Han, S. K. Cho, S. G. Oh, and S. S. Im, Synth. Met., 126, 53 (2002). https://doi.org/10.1016/S0379-6779(01)00494-5
  36. M. Zilberman, G. I. Titelman, A. Siegmann, Y. Haba, M. Narkis, and D. Alperstein, J. Appl. Polym. Sci., 66, 243 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971010)66:2<243::AID-APP5>3.0.CO;2-W
  37. Y. Roichman, M. S. Silverstein, A. Siegmann, and M. Narkis, J. Macromol. Sci. Phys., B38, 145 (1999).
  38. X. H. Yin, K. Yoshino, H. Yamamoto, T. Watanuki, I. Isa, S. Nakagawa, and M. Adachi, J. Appl. Phys., 33, 3597 (1994). https://doi.org/10.1143/JJAP.33.3597
  39. R. M. Scarisbrick, J. Phys. D, 66 2098 (1973).