Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer

폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포

  • Hong, Sung-Ho (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Eun-Ji (Department of Polymer Science and Engineering, Inha University) ;
  • Song, Kwon-Bin (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Department of Polymer Science and Engineering, Inha University)
  • 홍성호 (인하대학교 고분자공학과) ;
  • 이은지 (인하대학교 고분자공학과) ;
  • 송권빈 (인하대학교 고분자공학과) ;
  • 이광희 (인하대학교 고분자공학과)
  • Received : 2011.04.02
  • Accepted : 2011.06.08
  • Published : 2011.11.25

Abstract

Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.

블록 공중합체/단일중합체 블렌드에서 단일중합체의 농도와 분자량 변화에 따른 단일중합체의 분포 경향을 알아 보았다. 중수소화 폴리(메틸 메타크릴레이트) 또는 폴리스티렌을 중수소화 폴리스티렌-폴리(메틸 메타크릴레이트) 이중 블록 공중합체에 20 wt%까지 혼입하였다. 시료들은 소각 X-선 산란, 중성자 반사율 및 투과 전자 현미경으로 조사하였다. 실리콘 웨이퍼에 스핀 코팅하여 얇은 필름 상으로 제조한 블록 공중합체는 기질 표면에 대해 평행하게 배향된 라멜라 모폴로지를 형성하였다. 블록 공중합체의 미세 도메인 구조는 단일중합체의 부가에 의해 상당히 교란되었다. 그 결과로 단일중합체의 농도가 15 wt% 이상인 경우에는 배열 질서도가 낮은 라멜라 모폴로지가 나타났다. 단일공중합체의 농도나 분자량이 증가하면 단일중합체가 미세 도메인을 불균일하게 팽윤시키면서 보다 많은 단일중합체가 미세 도메인의 중앙 부위로 이동하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. U. Jeong, D. Y. Ryu, D. H. Kho, J. K. Kim, J. T. Goldbach, D. H. Kim, and T. P. Russell, Adv. Mater., 16, 533 (2004). https://doi.org/10.1002/adma.200306113
  2. U. Jeong, D. Y. Ryu, D. H. Kho, D. H. Lee, J. K. Kim, and T. P. Russell, Macromolecules, 36, 3626 (2003). https://doi.org/10.1021/ma034179k
  3. G. Liu, C. S. Thomas, G. S. W. Craig, and P. F. Nealey Adv. Funct. Mater., 20, 1251 (2010). https://doi.org/10.1002/adfm.200902229
  4. I. W. Hamley, The Physics of Block Copolymers, Oxford University Press, New York, 1998.
  5. B. Y. Kang, M. J. Choi, K. H. Hwang, K. H. Lee, and B. S. Jin, Polymer(Korea), 33, 485 (2009).
  6. H. Hyun J. C. Yang, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 30, 464 (2006).
  7. Y. I. Jeong, M. K. Jang, and J. W. Nah, Polymer(Korea), 33, 137 (2009).
  8. M. Y. Paik, J. K. Bosworth, D. M. Smilges, E. L. Schwartz, X. Andre, and C. K. Ober, Macromolecules, 43, 4253 (2010). https://doi.org/10.1021/ma902646t
  9. J. S. Kim, K. H. Lee, S. M. Jo, D. Y. Ryu, and J. K. Kim, Polymer(Korea), 28, 509 (2004).
  10. J. K. Lee, J. S. Kim, H. J. Lim, K. H. Lee, S. M. Jo, and T. Ougizawa, Polymer, 47, 5420 (2006). https://doi.org/10.1016/j.polymer.2006.05.022
  11. T. Hashimoto, H. Tanaka and H. Hasegawa, Macromolecules, 23, 4378 (1990). https://doi.org/10.1021/ma00222a009
  12. K. Sakurai, W. J. Macknight, D. J. Lohse, D. N. Schulz, and J. A. Sissano, Macromolecules, 27, 4941 (1994). https://doi.org/10.1021/ma00096a015
  13. L. Zhu, B. R. Mimnaugh, Q. Ge, R. P. Quirk, S. Z. D. Cheng, and E. L. Thomas, et al., Polymer, 42, 9121 (2001). https://doi.org/10.1016/S0032-3861(01)00394-9
  14. G. Radonjic and I. Smit, J. Polym. Sci. Part B: Polym. Phys., 39, 566 (2001). https://doi.org/10.1002/1099-0488(20010301)39:5<566::AID-POLB1030>3.0.CO;2-P
  15. V. Mishra, S. M. Hur, E. W. Cochran, G. E. Stein, G. H. Fredrickson, and E. J. Kramer, Macromolecules, 43, 1942 (2010). https://doi.org/10.1021/ma901891b
  16. B. Ptaszynaski, P. J. Teyssie, and A. Skoulios, Makromol. Chem., 176, 3483 (1975). https://doi.org/10.1002/macp.1975.021761129
  17. T. Hashimoto, H. Tanaka, and H. Hasegawa, Macromolecules, 23, 4378 (1990). https://doi.org/10.1021/ma00222a009
  18. K. I. Winey, E. L. Thomas, and L. J. Fetters, Macromolecules, 24, 6182 (1991) . https://doi.org/10.1021/ma00023a020
  19. A. M. Mayes, T. P. Russell, S. K. Satija, and C. F. Majkrzak, Macromolecules, 25, 6523 (1992). https://doi.org/10.1021/ma00050a022
  20. Z. G. Wang, R. A. Phillips, and B. S. Hsiao, J. Polym. Sci. Part B: Polym. Phys., 38, 2580 (2000). https://doi.org/10.1002/1099-0488(20001001)38:19<2580::AID-POLB100>3.0.CO;2-B
  21. Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, Macromolecules, 32, 765 (1999). https://doi.org/10.1021/ma9810114
  22. S. H. Anastasiadis, T. P. Russell, S. K. Satija, and C. F. Majkrzak, Phys. Rev. Lett., 62, 1852 (1989). https://doi.org/10.1103/PhysRevLett.62.1852
  23. N. Torikai, I. Noda A. Karim, S. K. Satija, C. C. Han, Y. Matsushita, and T. Kawakatsu, Macromolecules, 30, 2907 (1997). https://doi.org/10.1021/ma961089p
  24. H. Tanaka, H. Hasegawa, and T. Hashimoto, Macromolecules, 24, 240 (1991). https://doi.org/10.1021/ma00001a037