Abstract
In this paper, we propose a new method for extracting muscles from lumbar images. The proposed method sets areas without distortions with field expert's assistance as areas of measuring interest and removing noises from initial ultrasonic videos. Then, the method emphasizes the brightness contrast with Ends-in search stretching algorithm and separate thoracic vertebra from subcutaneous fat area using morphological characteristics. 4-directions contour tracing algorithm is applied to extract the bottom of subcutaneous fat area. Extracting thoracic vertebra area requires noise removal and morphological characteristics as well among candidate areas obtained by controlling min-max brightness. The thickness of muscles is then defined as the length between subcutaneous fat area and extracted thoracic vertebra. The experiment which consists of 368 image analysis verifies that the proposed method is more effective in measuring the thickness of muscles than before.
본 논문에서는 요부 영상에서 근육을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 왜곡이 존재하지 않는 영역을 측정할 근육 영역으로 설정한 후, 초기 초음파 영상에서 불필요한 잡음을 제거하고 Ends-in Search Stretching 기법을 적용하여 근육 영역의 명암 대비를 강조한다. 그리고 형태학적 특징을 이용하여 등뼈 영역과 피하지방을 분리한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 피하지방의 하단 부분을 추출한다. 또한 최대 및 최소 명암도를 조정하여 얻어진 등뼈의 후보 영역에서 형태학적 특징을 이용하여 잡음을 제거하고 최종적으로 등뼈 영역을 추출한다. 추출된 등뼈 영역을 기반으로 피하지방층과 등뼈 사이를 근육의 두께로 측정한다. 본 연구에서 제안된 방법을 368개의 요부 초음파 영상에 적용하여 근육 영역을 추출한 결과, 제안된 방법이 초음파 영상에서 근육 영역들의 두께를 측정하는데 기존의 근육 측정 방법보다 효과적인 것을 확인할 수 있었다.