기술혁신학회지 (Journal of Korea Technology Innovation Society)
- 제14권spc호
- /
- Pages.1232-1255
- /
- 2011
- /
- 1598-2912(pISSN)
- /
- 2713-8666(eISSN)
기대주기 분석을 활용한 수요예측 연구: 하이브리드 자동차의 사례를 중심으로
An Study of Demand Forecasting Methodology Based on Hype Cycle: The Case Study on Hybrid Cars
초록
본 연구에서는 신제품 확산 모델 활용에 있어서 보다 적은 노력이 필요하지만 객관적이고 신속한 활용을 가능하게 만들어줄 모형을 제안한다. 기대주기 모델과 소비자 수용 모델이라는 이론적 배경을 바탕으로, 서지분석학과 초기 시장의 규모만으로 최대 잠재 시장을 추정해냄으로써 대표적인 확산 모형인 배스 모형(Bass model)에 필요한 주요 모수를 제공하는 방법을 제시했다. 모형의 예측력을 하이브리드자동차 사례를 통해 분석한 결과, 모형의 예측결과는 여러 가지 객관적인 정보를 통해 추정한 잠재 시장과 유사한 규모를 성공적으로 예측해 내어 모형의 활용 가능성을 확인할 수 있었다. 제안된 모형이 제공한 최대 잠재 시장은 다른 성장곡선모형에도 바로 적용 가능하다는 점을 볼 때 제안된 모형은 서지분석학을 통한 기술 확산 예측과 유망기술 탐색에 새로운 방향을 제시했다고 할 것이다.
This paper proposes a model for demand forecasting that will require less effort in the process of utilizing the new product diffusion model while also allowing for more objective and timely application. Drawing upon the theoretical foundation provided by the hype cycle model and the consumer adoption model, this proposed model makes it possible to estimate the maximum market potential based solely on bibliometrics and the scale of the early market, thereby presenting a method for supplying the major parameters required for the Bass model. Upon analyzing the forecasting ability of this model by applying it to the case of the hybrid car market, the model was confirmed to be capable of successfully forecasting results similar in scale to the market potential deduced through various other objective sources of information, thus underscoring the potentials of utilizing this model. Moreover, even the hype cycle or the life cycle can be estimated through direct linkage with bibliometrics and the Bass model. In cases where the hype cycles of other models have been observed, the forecasting ability of this model was demonstrated through simple case studies. Since this proposed model yields a maximum market potential that can also be applied directly to other growth curve models, the model presented in the following paper provides new directions in the endeavor to forecast technology diffusion and identify promising technologies through bibliometrics.
키워드