참고문헌
- Bishop, C. M. (2006), Pattern recognition and machine learning, Springer.
- Choi, N. H., Son, K. M., and Lee, T. G. (2001), Daily peak load forecasting considering the load trend and temperature, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 6(6), 35-42.
- Cristianini, N. and Taylor, J. S. (2000), An Introduction to support vector machines and other kernel based learning methods, Cambridge University Press.
- Hall, M. A. (1999), Correlation-based Feature Selection for Machine Learning, The University of Waikato Press.
- Han, C. H., Lee, J. W., and Lee, K. K. (2009), Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts, The Korean Operations Research and Management Science Society, 26(1), 79-91.
- Han, S. M. (2009), A study on the development of the generation expansion planning system using multi-criteria decision making rule, Ph.D diss, Hongik University.
- Harvey, A. C. and Koopmand, S. J. (1993), Forecasting Hourly Electricity Demand using Time-varying splines, Journal of the American Statistical Association, 88(424), 1228-1236. https://doi.org/10.1080/01621459.1993.10476402
- Haykin, S. (1999), Neural networks: a comprehensive foundation, Prentice-Hall, Inc.
- Hong, W. C. (2009), Electric Load Forecasting by Support Vector Model, Applied Mathematical Modelling, 33(5), 2444-2454. https://doi.org/10.1016/j.apm.2008.07.010
- Khotanzad, A., Davis, M. H., Abaye, A., and Maratukulam, D. J. (1996), An Artificial Neural Network Hourly Temperature Forecaster with Applications in Load Forecasting, Journal of Power Systems, 11(2), 870-876. https://doi.org/10.1109/59.496168
- Kim, J. H., Lee, J. G., and Cha, J. M. (2009), Load forecasting and demand management considering with renewable energy, The Korean Institute of Electrical Engineers, 2260-2261.
- Kitagawa, G. and Gersch, W. (1996), Smoothness Priors Analysis o] Time Series, Lecture Notes in Statistics, Springer-Verlag.
- Kong, D. S., Kwak, Y. H., and Huh, J. H. (2010), Artificial Neural Network Based Energy Demand Prediction for the Urban District Energy Planning, Journal of the Architectural Institute of Korea, 26(2), 221-230.
- Kwon, S. K. (2004), The Present Situation of District Heating in Korea and Foreign Countries, The Society of Air-conditioning and Refrigerating Engineers of Korea, 1217-1222.
- Mirasgedis, S., Sarafidis, Y., Georgo Poulou, E., Lalas, D. P., Moschovits, M. Karagiannis, F., and Papakonstantinou, D. (2006), Models for mid-term electricity demand forecasting incorporating weather influences, Energy, 31(2-3), 208-227. https://doi.org/10.1016/j.energy.2005.02.016
- Nam, B. W., Song, K. B., Kim, K. H., and Cha, J. M. (2008), The Spatial Electric Load Forecasting Algorithm using the Multiple Regression Analysis Method, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 22(2), 63-70. https://doi.org/10.5207/JIEIE.2008.22.2.063
- Nrgaard, M. and Norgaard, P. M. (2006), Neural Networks for Modelling and Control of Dynamic Systems : A Practitioner's Handbook(Advanced Textbooks in Control and Signal Processing), Springer.
- Pai, P. F. and Hong, W. C. (2005), Support vector machines with simulated annealing algorithms in electricity load forecasting, Energy Conversion and Management, 46(17), 2669-2688. https://doi.org/10.1016/j.enconman.2005.02.004
- Pappas, S. Sp., Ekonomou, L., Karampelas, P., Karamousantas, D. C., Katsikas, S. K., Chatzarakis, G. E., and Skafidas, P. D. (2010), Electricity demand load forecasting of the Hellenic power system using an ARMA model, Electric Power Systems Research, 80(3), 256-264. https://doi.org/10.1016/j.epsr.2009.09.006
- Park, C. K. (2006), Estimating Software Development Cost USING Support Vector Regression, The Korean Operations Research and Management Science Society, 23(1), 75-91.
- Park, K., Hou, T., and Shin, H. (2011), Oil Price Forecasting Based on Machine Learning Techniques, Journal of the Korean Institute of Industrial Engineers, 37(1), 64-73. https://doi.org/10.7232/JKIIE.2011.37.1.064
- Romera, E. G., Moran, M. A. J., and Fernandez, D. C. (2008), Monthly electric energy demand forecasting with neural networks and Fourier series, Energy Conversion and Management, 49(11), 3135-3142. https://doi.org/10.1016/j.enconman.2008.06.004
- Shin, J. H. and Hong, Y. C. (2006), GMDH Algorithm with Data Weighting Performance and Its Application to Power Demand Forecasting, Journal of Control Automation and Systems Engineering, 12(7).
- Sholkopf, B. and Smola, A. (2002), Learning with Kernels, MIT Press, Cambridge MA.
- Srinivasan, D. (2008), Energy Demand Prediction using GMDH networks, Nuerocomputing, 72(1-3), 625-629. https://doi.org/10.1016/j.neucom.2008.08.006
- Thissen, U., van Brakel, R., de Weijer A. P., Melssen, W. J., and Buydens, L. M. C. (2003), Using Support Vector Machines for time series prediction, Chemometrics and Intelligent Laboratory Systems, 69(1-2), 35-49. https://doi.org/10.1016/S0169-7439(03)00111-4
- Wenwu, H., Zhizhong, W., and Hui, J. (2008), Model Optimizing and Feature Selection for Support Vector Regression in time series forecasting, Neurocomputing, 72(1-3), 600-611. https://doi.org/10.1016/j.neucom.2007.11.010
- Wi, Y. M., Moon, G. H., Lee, J. H., Joo, S. K., and Song, K. B. (2007), Load Forecasting for the Holidays using a Polynomial Regression Incorporating Temperature Effect, The Korean Institute of Electrical Engineers, 29-30.
- Yang, J., Rivard, H., and Zmeureanu, R. (2005), On-line building energy prediction using adaptive artificial neural networks, Energy and Buildings, 37(12), 1250-1259. https://doi.org/10.1016/j.enbuild.2005.02.005
피인용 문헌
- Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms vol.39, pp.1, 2013, https://doi.org/10.7232/JKIIE.2013.39.1.030
- Development of Daily Peak Power Demand Forecasting Algorithm using ELM vol.62, pp.4, 2013, https://doi.org/10.5370/KIEEP.2013.62.4.169
- Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model vol.63, pp.3, 2014, https://doi.org/10.5370/KIEEP.2014.63.3.189
- Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week vol.63, pp.4, 2014, https://doi.org/10.5370/KIEEP.2014.63.4.307
- Development of Peak Power Demand Forecasting Model for Special-Day using ELM vol.64, pp.2, 2015, https://doi.org/10.5370/KIEEP.2015.64.2.074
- The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network vol.41, pp.1, 2018, https://doi.org/10.11627/jkise.2018.41.1.084