DOI QR코드

DOI QR Code

An Improvement of Finding Neighbors in Flocking Behaviors by Using a Simple Heuristic

단순한 휴리스틱을 사용하여 무리 짓기에서 이웃 에이전트 탐색방법의 성능 개선

  • Jiang, Zi Shun (Dept. of Multimedia Engineering, Hansung University) ;
  • Lee, Jae-Moon (Dept. of Multimedia Engineering, Hansung University)
  • 장자순 (한성대학교 멀티미디어공학과) ;
  • 이재문 (한성대학교 멀티미디어공학과)
  • Received : 2011.07.25
  • Accepted : 2011.08.16
  • Published : 2011.10.20

Abstract

Flocking behaviors are frequently used in games and computer graphics for realistic simulation of massive crowds. Since simulation of massive crowds in real time is a computationally intensive task, there were many researches on efficient algorithm. In this paper, we find experimentally the fact that there are unnecessary computations in the previous efficient flocking algorithm, and propose a noble algorithm that overcomes the weakness of the previous algorithm with a simple heuristic. A number of experiments were conducted to evaluate the performance of the proposed algorithm. The experimental results showed that the proposed algorithm outperformed the previous efficient algorithm by about 21% on average.

무리 짓기는 대규모 무리의 사실적인 시뮬레이션으로 게임이나 컴퓨터 그래픽에서 자주 사용된다. 이러한 대규모 무리의 실시간 시뮬레이션은 계산 집약적 작업이기 때문에 효율적인 알고리즘에 대한 많은 연구들이 있었다. 본 논문에서는 기존의 효율적인 무리 짓기 알고리즘이 불필요한 계산을 포함하고 있다는 사실은 실험적으로 찾아내고, 간단한 휴리스틱으로 이러한 단점을 개선하는 새로운 알고리즘을 제안한다. 제안된 방법의 성능을 평가하기 위하여 많은 실험을 수행하였다. 실험의 결과는 제안하는 알고리즘이 기존의 효율적인 알고리즘에 비하여 평균 약 21%정도 성능을 개선한다는 것을 보였다.

Keywords

References

  1. Reynolds, C. W., Flocks, Herds, and Schools: A Distributed Behavioral Model, In Proceedings of SIGGRAPH 87, 21(4), 1987, pp. 25-34.
  2. Reynolds, C. W., Interaction with Groups of Autonomous Characters. In Proceedings of the Game Developers Conference, San Francisco, California, 2000, pp. 449-460.
  3. Iain D. Couzin, Jens Krause, Richard James, Graeme D. Ruxton and Nigel R. Franks., Collective Memory and Spatial Sorting in Animal Groups. J. theory Biol., 2002, pp. 1-11.
  4. Jadbabaie, J. Lin, A.S. Morese, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 2003, pp. 988-1001. https://doi.org/10.1109/TAC.2003.812781
  5. Buckland Mat., Programming Game AI by Example. Wordware Publications, ISBN 1556220782, 2005.
  6. G.Paulikas, D.Rubliauskas. Movement of Flocked Subpopulations in Distributed Genetic Programming. Information Technology And Control, Vol. 34, No. 4, 2005, pp 338-344.
  7. Ballerini M., N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. In Proceedings of the National Academy of Sciences, Vol. 105, No. 4, 2008, pp. 1232-1237.
  8. Seongdong Kim, Christoph Hoffmann and Jae Moon Lee, An Experiment in Rule-based Crowd Behavior for Intelligent Games. In Proceedings of Fourth International Conference on Computer Sciences and Convergence Information Technology, 2009, pp. 410-415.
  9. Jae Moon Lee, An Efficient Algorithm to Find k-Nearest Neighbors in Flocking Behavior. Information Processing Letters, 110, 2010, pp. 576-579. https://doi.org/10.1016/j.ipl.2010.04.024
  10. Jian Ma, Wei-guo Song, Jun Zhang, Siu-ming Lo, Guang-xuan Liao, "k-Nearest- Neighbor interaction induced self-organized pedestrian counter flow", Physica A 389, 2010, pp. 2101-2117. https://doi.org/10.1016/j.physa.2010.01.014