DOI QR코드

DOI QR Code

The Acute Toxicity of Naphthalene on Hematologic Properties in Juvenile Flounder Paralichthys olivaceus

넙치 치어 Paralichthys olivaceus의 혈액학적 성상에 미치는 나프탈렌의 급성독성영향

  • Lee, Kyoung-Seon (Faculty of Ocean System Engineering, Mokpo National Maritime University) ;
  • Ryu, Hyang-Mi (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 이경선 (목포해양대학교 해양시스템공학부) ;
  • 류향미 (국립수산과학원 서해수산연구소)
  • Received : 2011.06.28
  • Accepted : 2011.09.22
  • Published : 2011.09.30

Abstract

Naphthalene was composed of a substantial fraction of polycyclic aromatic ydrocarbons(PAHs) in crude oil and causes acute toxicity. In this study, we examined the toxicity of different kinds concentrations 0, 1000, 1800, 3200, 5600, $10000{\mu}g/L$ of naphthalene to juvenile flounder, Paralichthys olivaceus for 24h to determine 24-median lethal concentration($LC_{50}$) and acute effect on the hematological properties. 24h-$LC_{50}$ value of this species was $3600{\mu}g/L$. Hematocrit value significantly increased at 5600 and $10000{\mu}g/L$ naphthalene exposed group by 24h compared to control fish. Plasma. Glucose was significantly higher in the $10000{\mu}g/L$ (P<0.05). Plasma osmolality was significantly higher in the 3200, 5600 and $10000{\mu}g/L$. Plasma [$Na^+$] and [$K^+$] significantly increased in the 5600 and $10000{\mu}g/L$, however [$Cl^-$] was not affected by acute naphthalene exposure. The results of this study suggest the acute exposure to naphthalene affects both ionoregulation and osmoregulation in juvenile flounder.

넙치 치어에 대한 나프탈렌의 급성독성을 조사하기 위하여 대조구($0{\mu}g/L$), 1000, 1800, 3200, 5600, $10000{\mu}g/L$의 6개의 나프탈렌 농도구를 설정하여 24시간 동안 노출실험을 실시하고 혈액학적 성상을 분석하였다. 넙치 치어에 대한 나프탈렌의 24h-$LC_{50}$$3600{\mu}g/L$를 나타냈다. 넙치 치어의 핼액학적 반응에서 헤마토크리트값은 5600, $10000{\mu}g/L$의 농도구에서 대조구와 비교하여 유의하게 증가하였고, 글루코스는 $10000{\mu}g/L$의 농도 구에서 유의하게 증가 하였다(P<0.05). 삼투질 농도는 3200, 5600, $10000{\mu}g/L$의 농도구에서 유의하게 증가하였다. 반면, 이온분석 결과 [$Na^+$], [$K^+$]은 5600 및 $10000{\mu}g/L$ 나프탈렌 농도구에서 유의하게 증가하였으나 [$Cl^-$]는 큰 차이를 보이지 않았다.

Keywords

References

  1. 김상진(1999), 해양유류오염의 생물정화기술은 어떻게 적용하는가?: 기술적 원리와 국내적용을 위한 제안, 한국해양환경공학회, 1999년도 춘계학술대회 논문집, pp. 7-16.
  2. 이종화(2000), 유류오염, In; 해양오염, 신광문화사, p. 56.
  3. Barton, B. A. and G. K. Iwama(1991), Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids, Annual Review of Fish Diseases, Vol. 1, pp. 3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  4. Boese, B. L., V. G. Johnson, D. E. Chapman, J. W. Ridlington and R. Randal(1982), Effects of petroleum refinery wastewater exposure on gill ATPase and selected blood parameters in the Pacific staghorn sculpin(Leptocottus armatus), Comparative Biochemistry and Physiology, Vol. 71C, pp. 63-67.
  5. Darville, R. G. and J. L. Wilhm(1984), The effect of naphthalene on oxygen consumption and hemoglobin concentration in Chironomus attenuatus and on oxygen consumption and life cycle of Tanytarsus dissimilis, Environmental Toxicology and Chemistry, Vol. 3, pp. 135-141. https://doi.org/10.1002/etc.5620030115
  6. DiMichele, L. and M. H. Taylor(1978), Histopathological and physiological responses of Fundulus heteroclitus to Naphthalene exposure, Journal of Fisheries Research Board Canada, Vol. 35, pp. 1060-1066. https://doi.org/10.1139/f78-169
  7. Englehardt, F. R., M. P. Wong and M. E. Duey(1981), Hydromineral balance and gill morphology in rainbow trout Salmo gairdneri, acclimated to fresh and seawater, as affected by petroleum exposure, Aquatic Toxicology, Vol. 1, pp. 175-186. https://doi.org/10.1016/0166-445X(81)90013-8
  8. Gardner, G. R.(1975), Chemically induced lesions in estuarine or marine teleosts. In: The pathology of fishes. Ribelin W. and Migaki G. eds. University of Wisconsin Press, Madson, U.S.A., pp. 657-693.
  9. Hall, J. A. and L. Golding(1998), Marine Fish, Acute toxicity test protocol. In : Standard Methods for whole Effluent Toxicity Testing: Development and Application. NIWA, MFE 80205, Hamilton. pp. 1-29.
  10. Kennedy, C. J and A. P. Farrel(2005), Ion homeostasis and interrenal stress responses in juvenile Pacific herring, Clupea pallasi, exposed to the water-soluble fraction of crude oil. Journal of Experimental Marine Biology and Ecology, Vol. 323, pp. 43-56. https://doi.org/10.1016/j.jembe.2005.02.021
  11. Lee, J. S., K. Y. Lee, D. H. Kim, J. H. Kim and K. N. Han(2004), Acute toxicity of dissolved inorganic metals, organotins and polycyclic aromatic hydrocarbons to puffer fish, Takifugu obscurus, Journal of Environmental Toxicology, Vol. 19, pp. 141-151.
  12. Oh, M. J., S. J. Jung and H. Y. Kim(1999), Acute Toxicity of Ozone on Survival and Physiological Conditions of Olive Flounder, Paralichthys Olivaceus, Journal of Fish Pathology, Vol. 12, pp. 32-41.
  13. Polino, C. A., E. Georgiades and D. A. Holdway(2009), Physiological changes in reproductively active rainbow fish (Melanotaenia fluviatilis) following exposure to naphthalene, Ecotoxicology and Environmental Safety, Vol. 72, pp. 1265-1270. https://doi.org/10.1016/j.ecoenv.2009.01.012
  14. Saiz, E., J. Movilla, L. Yebra, C. Barata and A. Calbet (2009), Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on naupliar and adult stages of the marine cyclopoid copepod Oithona davisae, Environmental Pollution, Vol. 157, pp. 1219-1226. https://doi.org/10.1016/j.envpol.2008.12.011
  15. Sovio, A. and M. Nikinmaa(1981), The swelling of erythrocytes in relation to the oxygen affinity of the blood of rainbow trout (Salmo gairdneri) Richardson, In: Fish and Stress, Pickering A. D., ed., Academic Press, New York, U.S.A., pp. 103-119.
  16. Thomas, P. and L .Budiantara(1995), Reproductive Life History Stages Sensitive to Oil and Naphthalene in Atlantic Croaker, Marine Environmental Research, Vol. 39, pp. 147-150. https://doi.org/10.1016/0141-1136(94)00072-W
  17. Thomas, P., B. R. Woodin and J. M. Neff(1980), Biochemical responses of the striped mullet Mugil cephalus to oil exposure: 1. Acute responsesinterrenal activations and secondary stress responses, Marine Biology, Vol. 59, pp. 114-141.
  18. Vijayan, M. M. and T. W. Moon(1994), The stress response and the plasma disappearance of corticostreiod and glucose in a marine teleost the sea raven, Canadian Journal of Zoology, Vol. 72, pp. 379-386. https://doi.org/10.1139/z94-054
  19. Vijayavel, K. and M. P. Balasubramanian(2006), Changes in oxygen consumption and respiratory enzymes as stress indicators in an estuarine edible crab Scylla serrrata exposed to Naphthalene, Chemosphere, Vol. 63, pp. 1523-1531. https://doi.org/10.1016/j.chemosphere.2005.09.010
  20. Wedemeyer, G. A. and D. J. McLeay(1981), Methods for determining the tolerance of fishes to environmental stressors. In Stress and Fish(Ed. by A.D. Pickering), Academic Press, London, pp. 247-275.
  21. Wedemeyer, G. A. and W. T. Yasutake(1997), Clinical methods for the assessment for the effects of environmental stress on fish health. U.S. Fish and Wildlife Service Technical Paper, Washington D.C., USA, Vol. 89, p. 18.

Cited by

  1. The Bioconcentration of Naphthalene in Tissues of Juvenile Olive flounder, Paralichthys olivaceus vol.18, pp.6, 2012, https://doi.org/10.7837/kosomes.2012.18.6.530
  2. Change of Survival and Reproductive Indicator of the Manila Clam, Ruditapes philippinarum Following Chronic Exposure to Naphthalene vol.28, pp.4, 2012, https://doi.org/10.9710/kjm.2012.28.4.305
  3. 암모니아 급성노출에 따른 대왕범바리(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)의 혈액성상 및 혈장성분의 변화 vol.38, pp.1, 2011, https://doi.org/10.11626/kjeb.2020.38.1.040