DOI QR코드

DOI QR Code

The effect of fibronectin-coated implant on canine osseointegration

  • Kim, Sung-Tae (Department of Prosthodontics, Yonsei University College of Dentistry) ;
  • Myung, Woo-Chun (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Cha, Jae-Kook (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Yang, Hyeong-Cheol (Department of Dental Biomaterials Science and Dental Research Institute, Seoul National University School of Dentistry) ;
  • Lee, In-Seop (Institute of Physics and Applied Physics, Atomic-Scale Surface Research Center, Yonsei University) ;
  • Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
  • 투고 : 2011.07.02
  • 심사 : 2011.09.20
  • 발행 : 2011.10.31

초록

Purpose: The purpose of this study was to characterize the osseointegration of the fibronectin-coated implant surface. Methods: Sand-blasted, large-grit, acid-etched (SLA) surface implants, with or without a thin calcium phosphate and fibronectin coating, were placed in edentulous mandibles of dogs 8 weeks after extraction. All dogs were sacrificed forhistological and histomorphometric evaluation after 4- and 8-week healing periods. Results: All types of implants were clinically stable without any mobility. Although the bone-to-implant contact and bone density of the SLA implants coated with calcium phosphate (CaP)/fibronectin were lower than the uncoated SLA implants, there were no significant differences between the uncoated SLA surface group and the SLA surface coated with CaP/fibronectin group. Conclusions: Within the limits of this study, SLA surfaces coated with CaP/fibronectin were shown to have comparable bone-to-implant contact and bone density to uncoated SLA surfaces.

키워드

참고문헌

  1. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010;28:198-206. https://doi.org/10.1016/j.tibtech.2009.12.003
  2. Atieh MA, Payne AG, Duncan WJ, de Silva RK, Cullinan MP. Immediate placement or immediate restoration/loading of single implants for molar tooth replacement: a systematic review and meta-analysis. Int J Oral Maxillofac Implants 2010;25:401-15.
  3. Bornstein MM, Hart CN, Halbritter SA, Morton D, Buser D. Early loading of nonsubmerged titanium implants with a chemically modified sand-blasted and acid-etched surface: 6-month results of a prospective case series study in the posterior mandible focusing on peri-implant crestal bone changes and implant stability quotient (ISQ) values. Clin Implant Dent Relat Res 2009;11:338-47. https://doi.org/10.1111/j.1708-8208.2009.00148.x
  4. Morton D, Bornstein MM, Wittneben JG, Martin WC, Ruskin JD, Hart CN, et al. Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface: two-year results of a prospective two-center study. Clin Implant Dent Relat Res 2010;12:9-17. https://doi.org/10.1111/j.1708-8208.2009.00204.x
  5. Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, et al. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study. Int J Oral Maxillofac Implants 2007;22:755-60.
  6. Yoon HJ, Song JE, Um YJ, Chae GJ, Chung SM, Lee IS, et al. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs. Biomed Mater 2009;4:044107. https://doi.org/10.1088/1748-6041/4/4/044107
  7. Kokubo T, Kim HM, Kawashita M, Nakamura T. Bioactive metals: preparation and properties. J Mater Sci Mater Med 2004;15:99-107.
  8. de Groot K, Wolke JG, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H 1998;212:137-47.
  9. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14:195-200.
  10. Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 2000;21:469-73. https://doi.org/10.1016/S0142-9612(99)00186-6
  11. Lee IS, Whang CN, Kim HE, Park JC, Song JH, Kim SR. Various Ca/P ratios of thin calcium phosphate films. Mater Sci Eng C Biomim Mater Sens Syst 2002;22:15-20. https://doi.org/10.1016/S0928-4931(02)00107-8
  12. Hynes RO. Fibronectins. Sci Am 1986;254:42-51.
  13. Horbett TA. Chapter 13 Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovasc Pathol 1993;2(3 Suppl):137-48.
  14. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials 1999;20:2311-21. https://doi.org/10.1016/S0142-9612(99)00160-X
  15. Cannas M, Denicolai F, Webb LX, Gristina AG. Bioimplant surfaces: binding of fibronectin and fibroblast adhesion. J Orthop Res 1988;6:58-62. https://doi.org/10.1002/jor.1100060108
  16. Dean JW 3rd, Culbertson KC, D'Angelo AM. Fibronectin and laminin enhance gingival cell attachment to dental implant surfaces in vitro. Int J Oral Maxillofac Implants 1995;10:721-8.
  17. El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on $Ti-{6A}_1-4V$ implant material in vitro. J Biomed Mater Res 1998;41:30-40. https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<30::AID-JBM4>3.0.CO;2-R
  18. Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, et al. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 2001;168:178-87. https://doi.org/10.1159/000047833
  19. Sugino A, Miyazaki T, Kawachi G, Kikuta K, Ohtsuki C. Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. J Mater Sci Mater Med 2008;19:1399-405. https://doi.org/10.1007/s10856-007-3257-5
  20. Chen C, Lee IS, Zhang SM, Yang HC. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater 2010;6:2274-81. https://doi.org/10.1016/j.actbio.2009.11.033
  21. Hayakawa T, Yoshinari M, Nemoto K. Direct attachment of fibronectin to tresyl chloride-activated titanium. J Biomed Mater Res A 2003;67:684-8.
  22. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants 2006;21:859-66.
  23. do Serro AP, Fernandes AC, de Jesus Vieira Saramago B. Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. J Biomed Mater Res 2000;49:345-52. https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<345::AID-JBM7>3.0.CO;2-R
  24. Weiss RE, Reddi AH. Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci U S A 1980;77:2074-8. https://doi.org/10.1073/pnas.77.4.2074
  25. Saba TM, Jaffe E. Plasma fibronectin (opsonic glycoprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function. Am J Med 1980;68:577-94. https://doi.org/10.1016/0002-9343(80)90310-1
  26. Tamada Y, Ikada Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interface Sci 1993;155:334-9. https://doi.org/10.1006/jcis.1993.1044
  27. Jonsson U, Ivarsson B, Lundström I, Berghem L. Adsorption behavior of fibronectin on well-characterized silica surfaces. J Colloid Interface Sci 1982;90:148-63. https://doi.org/10.1016/0021-9797(82)90408-8
  28. Malmstrom HS, Fritz ME, Timmis DP, Van Dyke TE. Osseo-integrated implant treatment of a patient with rapidly progressive periodontitis. A case report. J Periodontol 1990;61:300-4. https://doi.org/10.1902/jop.1990.61.5.300
  29. Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998;17:63-76. https://doi.org/10.1111/j.1600-0757.1998.tb00124.x
  30. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.

피인용 문헌

  1. Electrochemical modulation of plasma fibronectin surface conformation enables filament formation and control of endothelial cell-surface interactions vol.4, pp.88, 2011, https://doi.org/10.1039/c4ra06957a
  2. Early bone healing onto implant surface treated by fibronectin/oxysterol for cell adhesion/osteogenic differentiation: in vivo experimental study in dogs vol.44, pp.5, 2011, https://doi.org/10.5051/jpis.2014.44.5.242
  3. Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts vol.7, pp.2, 2011, https://doi.org/10.4047/jap.2015.7.2.138
  4. Osseoconductivity of a Specific Streptavidin–Biotin–Fibronectin Surface Coating of Biotinylated Titanium Implants – A Rabbit Animal Study vol.17, pp.suppl2, 2011, https://doi.org/10.1111/cid.12292
  5. An Overview of Biomaterials in Periodontology and Implant Dentistry vol.2017, pp.None, 2011, https://doi.org/10.1155/2017/1948241
  6. Significance of Orthotropic Material Models to Predict Stress Around Bone-Implant Interface Using Numerical Simulation vol.9, pp.3, 2011, https://doi.org/10.1007/s12668-019-00649-5
  7. Investigation of the impact of magnesium versus titanium implants on protein composition in osteoblast by label free quantification vol.12, pp.6, 2011, https://doi.org/10.1039/d0mt00028k