DOI QR코드

DOI QR Code

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay

수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석

  • 이치홍 (동아대학교 토목공학과) ;
  • 정재욱 (동아대학교 토목공학과) ;
  • 김성렬 (동아대학교 토목공학과)
  • Received : 2011.05.20
  • Accepted : 2011.10.10
  • Published : 2011.10.31

Abstract

Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

버켓기초는 현재 해양 구조물의 앵커나 해양 풍력발전의 기초로 광범위하게 쓰이고 있다. 그러나, 지금까지 버켓기초에 대한 설계 방법은 명확하게 제시되지 않았다. 그러므로, 본 연구에서는 범용 유한요소 해석 프로그램인 ABAQUS(2010)를 이용하여 점성토 지반에 설치된 버켓기초의 지지력 및 하중-변위거동에 대해 분석하였다. 버켓기초의 지지력에 영향을 주는 매개변수로 기초지름에 대한 근입깊이 비(L/D)를 선정하고 L/D 비를 0.25~ 1.0로 변화시키며 수직방향 압축과 수평방향의 지지거동을 분석하였다. 수치해석 결과 버켓기초의 지지력은 L/D비에 큰 영향을 받으며 L/D비가 0.25에서 1.0으로 증가함에 따라 수직방향 지지력은 약 40%, 수평방향 지지력은 약 90% 증가하는 것으로 나타났다. 수직하중이 작용하는 경우 버켓기초의 지지력은 깊은 기초와 유사하게 선단지지력과 주변마찰력을 분리하여 산정할 수 있었다. 그리고, 수평하중이 작용하는 경우 L/D비가 0.25 인 경우 기초의 수평이동 경향이 지배적이지만, L/D비가 0.5 이상으로 증가하면 기초의 회전파괴 경향이 지배적인 것으로 나타났다.

Keywords

References

  1. (사)한국지반공학회 (2003), 구조물 기초설계기준 해설, 구미서관, pp.239.
  2. Abaqus (2010), User's Manual. Version 6.10-1.
  3. Aubeny, C. P., Han, S. W., and Murff, J. D. (2003), "Inclined load capacity of suction caissons", Int. J. Numer. Anal. Meth. Geomech, Vol.27, pp.1235-1254. https://doi.org/10.1002/nag.319
  4. Byrne, B. W. (2000), Investigations of Suction Caissons in Dense Sand, Ph. D. Thesis, University of Oxford, Oxford.
  5. Byrne, B. W., and Houlsby, G. T. (2003), "Foundations for offshore wind turbines", Phil. Trans. R. Lond Ser. A 361, pp.2909-2930. https://doi.org/10.1098/rsta.2003.1286
  6. Deng, W., and Carter, J. P. (1999), Analysis of Suction Caissons in Uniform Soils Subjected to Inclined Uplift Loading, Report No. R798, Department of Civil Engineering, The University of Sydney, Australia.
  7. DNV (2007), Offhore Standard DNV-OS-J101, Design of Offshore Wind Turbine Structures.
  8. Gourvenes, S., and Jensen, K. (2009), "Effect of embedment and spacing of cojoined Skirted Foundation systems on Undrained Limit States under General Loading", International Journal of Geomechanics, ASCE, Vol.9, No.6
  9. Hansen, J. B. (1970), "A revised and extended formula for bearing capacity", Danish Geotech. Institute Bull. 98, pp.5-11.
  10. Mayne, P. W., and Poulos, H. G. (1999). "Approximate displacement influence factors for elastic shallow foundations." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.6, pp.453-460. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(453)
  11. Meyerhof, G. G. (1953), "The bearing capacity of foundations under eccentric and inclined loads", Proc. 3rd Int. Soc. for Soil Mechanics and Foundation Engineering, Zurich, Switzerland, Vol.1, pp.440-445.
  12. Taiebat, H. A., and Carter, J. P. (2000), "Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading", Geotechnique, Vol.50, No.4, pp.409-418. https://doi.org/10.1680/geot.2000.50.4.409
  13. Taini, K., and Craig, W. H. (1995), "Bearing capacity of circular foundations on soft clay of strength increasing with depth", Soils and Foundations, Vol.35, No.4, pp.21-35. https://doi.org/10.3208/sandf.35.4_21
  14. Tran, M. N., and Randolph, M. F. (2008), "Variation of suction pressure during caisson installation in sand", Geotechnique, Vol.58, No.1, pp.1-11. https://doi.org/10.1680/geot.2008.58.1.1
  15. Tresca, H. (1864), "Sur l'ecoulement des corps solides soumis a de fortes pressions", C. R. Acad. Sci. Paris, Vol.59, pp.754-763.
  16. Watson, P. G., and Randolph, M. F. (1997), "Vertical capacity of caisson foundations in calcareous sediments", Proc. 7th int. Offshore and Porlar Eng. Conf., Honolulu, Hawaii, pp.784-790.
  17. Yun, G., and Bransby, M. F. (2007a), "The undrained vertical bearing capacity of skirted foundations", Soils and Foundations, Vol.47, No.3, pp.493-505. https://doi.org/10.3208/sandf.47.493
  18. Yun, G., and Bransby, M. F. (2007b), "The horizontal-moment capacity of embedded foundations in undrained soil", Canadian Geotechnical Journal, Vol.44, No.4, pp.409-424. https://doi.org/10.1139/t06-126
  19. Zhan, Y. G., and Liu, F. C. (2010), "Numerical Analysis of Bearing Capacity of Suction Bucket Foundation for Offshore Wind Turbines", Electronic Journal of Geotechnical Engineering, Vol.15, pp.633-644.

Cited by

  1. 해상풍력 모노포드 버켓기초의 지지력 거동 - 원심모형실험 및 수치해석 vol.29, pp.4, 2011, https://doi.org/10.7843/kgs.2013.29.4.23
  2. 석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구 vol.30, pp.1, 2014, https://doi.org/10.7843/kgs.2014.30.1.103