DOI QR코드

DOI QR Code

Expression of Anion Exchanger and CFTR in the Hepatocyte and Cholangiocytes in Bile Duct-Ligated Rat

담관 결찰 쥐의 간세포와 담관세포의 anion exchanger와 CFTR 발현

  • Lee, Jae-Dong (Department of Gastroenterology/Hepatology, College of Medicine, Konkuk University) ;
  • Wang, Joon-Ho (Department of Gastroenterology/Hepatology, College of Medicine, Konkuk University) ;
  • Ki, Seung-Seog (Department of Gastroenterology/Hepatology, College of Medicine, Konkuk University) ;
  • Choe, Won-Hyeok (Department of Gastroenterology/Hepatology, College of Medicine, Konkuk University) ;
  • Park, Jae-Seung (Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine) ;
  • Cho, Won-Kyoo (Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine) ;
  • Park, Jung-Jun (Division of Sport Science, Pusan National University) ;
  • Kim, Hong-Su (Department of Gastroenterology/Hepatology, College of Medicine, Soonchunhyang University)
  • 이재동 (건국대학교 의과대학 내과학교실) ;
  • 왕준호 (건국대학교 의과대학 내과학교실) ;
  • 기승석 (건국대학교 의과대학 내과학교실) ;
  • 최원혁 (건국대학교 의과대학 내과학교실) ;
  • 박재승 (미국 인디아나 의과대학 소화기내과) ;
  • 조원규 (미국 인디아나 의과대학 소화기내과) ;
  • 박정준 (부산대학교 스포츠과학부) ;
  • 김홍수 (순천향대학교 의과대학 내과학교실)
  • Received : 2011.11.14
  • Accepted : 2011.12.14
  • Published : 2011.12.31

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) gene and sodium-independent $Cl^-/HCO_3^-$ anion exchanger (AE) genes are expressed in a wide variety of mammalian tissues including cholangiocytes. They play an important role in the regulation of intracellular pH (pHi) as well as in transepithelial acid/base transport necessary for biliary bicarbonate secretion. The aim of this study was to examine the expression level of CFTR gene and AE genes (AE1, AE2 and AE3) in the cholangiocytes and the hepatocytes, and also measure AE2 gene expression level after bile duct ligation (BDL). As we previously described, isolated hepatocytes and cholangiocytes from the liver of normal and BDL rats were prepared and gene expression levels were measured by using RT-PCR. We found that AE1, AE2, and AE3 genes were expressed in both hepatocytes and cholangiocytes, but CFTR was only in cholangiocytes. AE2 gene expression level was higher in the BDL hepatocytes than normal hepatocytes, which was significantly different between two groups. AE2 gene expression level was lower in the BDL cholangiocytes than normal cholangiocytes. However, AE2 gene expression level in both hepatocytes and cholangiocytes were not changed with a longer duration of BDL. These results suggest that CFTR and AE2 may play an important role in the pathogenetic mechanism of biliary cholestatic liver disease.

본 연구는 흰쥐의 담관 세포와 간세포에서 CFTR과 $AE1{\cdot}AE2{\cdot}AE3$ 유전자들의 발현 유무를 조사하고 흰쥐에서 담관 결찰 후 AE2 유전자의 발현의 변화를 관찰하고자 하였다. 200-250 g의 Sprague Dawley 계 흰쥐 24마리의 총담관을 결찰한 후 4 주 동안 1 주일에 6마리씩 희생하여 간세포와 담관 세포를 분리하였다. 6마리는 대조군으로 사용하여 간세포와 담관 세포에서 CFTR 유전자와 $AE1{\cdot}AE2$와 AE3 유전자 발현을 조사하고 담관 결찰 후 1 2 3 4주 간격으로 AE2 유전자 발현을 조사하였다. $AE1{\cdot}AE2$ 와 AE3는 간세포와 담관 세포에서 발현되었고 CFTR은 담관 세포에서만 발현되었다. 담관 결찰 담관세포군에서 AE2 유전자의 발현은 대조군인 정상 담관세포군에 비해서 낮았다. 결찰 담관세포군에서 AE2 유전자의 발현은 결찰 기간에 따라 차이가 없었다. 담관 결찰 간세포군에서 AE2 유전자의 발현은 대조군인 정상 간세포군에 비해서 경계적 유의성을 보이며 증가하는 경향이 있었다. 결찰 간세포군에서 AE2 유전자의 발현은 결찰 기간에 따라 차이는 없었다. 따라서 $CFTR{\cdot}AE1{\cdot}AE2$ 그리고AE3 는 간세포와 담관 세포에서 중탄산염이온과 수액을 매개하는 주된 이온 전달체라는 사실을 고려할 때 담도 담즙정체 간질환에서CFTR과 AE2 발현의 변화는 병리학적 기전에 중요한 역할을 할 수 있으리라고 생각된다.

Keywords

References

  1. Alper, S. L. 1991. The band 3-related AE anion exchanger gene family. Ann. Rev. Physiol. 53, 549-564. https://doi.org/10.1146/annurev.ph.53.030191.003001
  2. Alpini, G., C. D. Ulrich, J. O. Phillips, L. D. Pham, L. J. Miller, and N. F. LaRusso. 1994. Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am. J. Physiol. 266, G922-928.
  3. Alpini, G., R. Lenzi, L. Sarkozi, and N. Tavoloni. 1988. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. J. Clin. Invest. 81, 569-578. https://doi.org/10.1172/JCI113355
  4. Alpini, G., S. Roberts, S. M. Kuntz, Y. Ueno, S. Gubba, P. V. Podila, G. LeSage, and N. F. LaRusso. 1996. Morphological, molecular, and functional heterogeneity of cholangicytes from normal rat liver. Gastroenterology 110, 1636-1643. https://doi.org/10.1053/gast.1996.v110.pm8613073
  5. Alpini, G., S. S. Glaser, Y. Ueno, L. Pham, P. V. Podila, A. Caligiuri. G. LeSage, and N. F. LaRusso. 1998. Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. Am. J. Physiol. 274, G767-G775.
  6. Alvaro, D., W. K. Cho, A. Mennone, and J. L. Boyer. 1993. Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells. J. Clin. Invest. 92, 1314-1325. https://doi.org/10.1172/JCI116705
  7. Aranda, V., I. Martinez, S. Melero, J. Lecanda, J. M. Banales, J. Prieto, and J. F. Medina. 2004. Shared apical sorting of anion exchanger isoforms AE2a, AE2b1, and AE2b2 in primary hepatocytes. Bioche. Biophys. Res. Commun. 319, 1040- 1046. https://doi.org/10.1016/j.bbrc.2004.05.080
  8. Brosius, F. C. 3rd, R. L. Pisoni, X. Cao, G. Deshmukh, D. Yannoukakos, A. K. Stuart-Tilley, C. Haller, and S. L. Alper. 1997. AE anion exchanger mRNA and protein expression in vascular smooth muscle cells, aorta, and renal microvessels. Am. J. Physiol. 273, F1039-F1047.
  9. Collins, F. S. 1992. Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774-779. https://doi.org/10.1126/science.1375392
  10. Elsing, C., A. Hirlinger, E. L. Renner, B. H. Lauterburg, P. J. Meier, and J. Reichen. 1995. Solvent isotope effect on bile formation in the rat. Biochem. J. 307, 175-181.
  11. Fitz, J. G. 2002. Regulation of cholangiocyte secretion. Semin. Liver Dis. 22, 241-249. https://doi.org/10.1055/s-2002-34502
  12. Fitz, J. G., S. Basavappa, J. McGill. O. Melhus, and J. A. Cohn. 1993. Regulation of membrane chloride currents in rat bile duct epithelial cells. J. Clin. Invest. 91, 319-328. https://doi.org/10.1172/JCI116188
  13. Knowlton, R. G., O. Cohen-Haguenauer, N. Van Cong, J. Frezal, V. A. Brown, D. Barker, J. C. Braman, J. W. Schumm, L. C. Tsui, and M. Buchwald. 1985. A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318, 380-382. https://doi.org/10.1038/318380a0
  14. Kudrycki, K. E. and G. E. Shull. 1989. Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA. J. Biol. Chem. 264, 8185-8192.
  15. LeSage, G., S. S. Glaser, S. Gubba, W. E. Robertson, J. L. Phinizy, J. Lasater, R. E. Rodgers, and G. Alpini. 1996. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 11, 1633-1644.
  16. Leung, G. P., X. D. Gong, K. H. Cheung, S. B. Cheng-Chew, and P. Y. Wong. 2001. Expression of cystic fibrosis transmembrane conductance regulator in rat efferent duct epithelium. Biol. Reprod. 64, 1509-1515.
  17. Martinez-Anso, E., J. E. Castillo, J. Diez, J. F. Medina, and J. Prieto. 1994. Immnohistochemical detection of chloride/ bicarbonate anion exchangers in human liver. Hepatology 19, 1400-1406. https://doi.org/10.1002/hep.1840190613
  18. Marzinoni, M., S. S. Glaser, H. Francis, J. L. Phinizy, G. LeSage, and G. Alpini. 2002. Functional Heterogeneity of Cholangiocytes. Semin. Liver Dis. 22, 227-240. https://doi.org/10.1055/s-2002-34501
  19. McGill, J. M., S. Basavappa, T. W. Gettys, and J. G. Fitz. 1994. Secretin activates Cl-channels in bile duct epithelial cells through a cAMP-dependent mechanism. Am. J. Physiol. 266, G731-G736.
  20. Morales, M. M., M. A. Capella, and A. G. Lopes. 1999. Structure and function of the cystic fibrosis transmembrane conductance regulator. Braz. J. Med. Biol. Res. 32, 1021-1028. https://doi.org/10.1590/S0100-879X1999000800013
  21. Rajendran, V. M., J. Black, T. A. Ardito, P. Sangan, S. L. Alper, C. Schweinfest, M. Kashgarian, and H. J. Binder. 2000. Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am. J. Physiol. 279, G931-G942.
  22. Riordan, J. R., J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grazelczak, J. Zielenski, S. Lok, N. Plavsic, J. L. Chou, M. L. Drumm, M. C. Iannuzzi, F. S. Collins, and L. C. Tsui. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066-1073. https://doi.org/10.1126/science.2475911
  23. Spirli, C., A. Granato, K. Zsembery, F. Anglani, L. Okolicsanyi, N. F. LaRusso, G. Crepaldi, and M. Strazzabosco. 1998. Functional polarity of Na+/H+ and Cl-/HCO3- exchangers in a rat cholangiocyte cell line. Am. J. Physiol. 275, G1236-1245.
  24. Strazzabosco, M., A. Mennone, and J. L. Boyer. 1991. Intracelluar pH regulation in isolated rat bile duct epithelial cells. J. Clin. Invest. 87, 1503-1512. https://doi.org/10.1172/JCI115160
  25. Strong, T. V., K. Boehm, and F. S. Collins. 1994. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J. Clin. Invest. 93, 347-354. https://doi.org/10.1172/JCI116966
  26. Thulin, L. and C. Johansson. 1978. Gastrointestinal hormones. Acta. Chir. Scand. Suppl. 482, 69-72.
  27. Tietz, P. S., G. Alpini, L. D. Pham, and N. F. Larusso. 1995. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am. J. Physiol. 269, G110-G118.
  28. Tsuganezawa, H., K. Kobayashi, M. Iyori, T. Araki, A. Koizumi, S. Watanabe, A. Kaneko, T. Fukao, T. Monkawa, T. Yoshida, D. K. Kim, Y. Kanai, H. Endou, M. Hayashi, and T. Saruta. 2001. A new member of the $HCO_{3}^{-}$ transporter superfamily is an apical anion exchanger of beta-intercalated cells in the kidney. J. Biol. Chem. 276, 8180-8189. https://doi.org/10.1074/jbc.M004513200
  29. You, M., M. Matsumoto, C. M. Pacold, W. K. Cho, and D. W. Crabb. 2004. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798-1808. https://doi.org/10.1053/j.gastro.2004.09.049