DOI QR코드

DOI QR Code

Reduction Effect of Microorganisms by Nano Plasma ion (NPi)

Nano Plasma ion (NPi)에 의한 미생물 제어

  • Received : 2011.09.26
  • Accepted : 2011.12.14
  • Published : 2011.12.31

Abstract

The bactericidal effect of nano plasma ion (NPi) which was generated by NPi was analyzed using different kinds of microorganisms, exposure times, chamber sizes, ion amounts and distance. As the result of Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus and Bacillus subtilis were shown different in decrement. Gram-negative bacteria E. coli showed the highest percentage (96.57%) and Gram-positive bacteria B. subtilis which produced spore has the lowest percentage (57.41%). From the exposure time of NPi most of the microorganisms were extinct at an early stage. According to the size of the chamber we compared the loss of E.coli and the experiment result shown, analyzed NPi using 5 chambers $0.005m^3$ to $30m^3$ for 2 hr, that when volume of the chamber increased, saturation ion and bactericidal effect was decreased. In addition, an NPi generator installed in the $1m^3$ chamber investigated the decrement of E. coli. Saturation ion concentration increased with decrement. Finally, E. coli showed a similar reduction according to the distance from NPi generator.

Nano plasma ion (NPi) generator에서 발생한 NPi의 미생물에 대한 살균 효과를 측정하기 위해 미생물 종류, 조사 시간, 챔버 용적, 이온 수량, 거리에 따라 실험 하였다. 먼저 6종의 미생물 Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis를 대상으로 실험한 결과 미생물 종류에 따라 각각 다른 감소율을 나타냈으며, 그람 음성균인 E. coli가 96.57%로 가장 높았고, 그람 양성균 중 포자를 생성하는 B. subtilis가 57.41%로 가장 낮았다. 그리고 NPi 조사시간에 따라 살균력 측정한 결과, 반응 초기에 대부분의 미생물이 사멸하였으며 이후 서서히 증가하였다. 또한 챔버의 크기에 따른 E. coli의 감소율을 비교하였으며 $0.005m^3$부터 $30m^3$까지 5개 챔버에서 NPi를 2시간 조사한 결과 용적이 증가함에 따라 포화이온 농도는 낮아졌고 이와 함께 살균력도 감소하였다. 이에 $1m^3$ 챔버에 NPi generator를 추가로 설치하여 포화 이온농도에 따른 E. coli의 감소율을 알아보았고 포화 이온 농도가 증가함에 따라 감소율도 함께 증가하는 것으로 나타났다. 마지막으로 NPi generator의 거리에 따른 E. coli의 감소율을 확인하였고 이온이 직접적으로 분출되는 부분의 99.19%를 제외한 나머지 위치에서 팬에 의한 이온 순환으로 포화농도가 비슷하게 유지 되었으며 약 97%의 감소율을 나타냈다.

Keywords

References

  1. Cappuccino, J. G. and N. Sherman. 2007. Microbiology - A laboratory manual, pp. 133-136, 8th (eds.), Pearson Education.
  2. Cayuela, M. M. 1995. Oxygen free radicals and human disease. Biochimie. 77, 147-161. https://doi.org/10.1016/0300-9084(96)88119-3
  3. Choi, J. H., H. J. Kim, Y. K. Lee, H. S. Jung, and K. S. Hong. 2004. Environmental Nanotechnology for the Control of Indoor Air Quality. Poly. Sci. Technol. 15, 191-197.
  4. Digel, I., A. T. Artmann, K. Nishikawa, M. Cook, E. Kurulgan, and G. M. Artmann. 2005. Bactericidal effents of plasma-generated cluster ions. Med. Biol. Eng. Comput. 43, 800-807. https://doi.org/10.1007/BF02430960
  5. Grinshpun, S. A., A. Adhikari, T. Honda, K. Y. Kim, M. Toivol, K. S. R. Rao, and T. Reponen. 2007. Control of aerosol contaminants in indoor air: combining the particle concentration with microbal inactivation. Environ. Sci. Technol. 41, 606-612. https://doi.org/10.1021/es061373o
  6. Jang, G. H. 2007. Analysis of the indoor air pollutions and improvement of the indoor air quality with a cold plasma -hydroxyl radical. Unpublished master's thesis, Yonsei University, Seoul, Korea.
  7. Jung, H. G. 2004. Plasma cluster ion air conditioner. Korea Institute of Science and Technology Information.
  8. Kim, Y. S., K. Y. Kim, M. S. Cho, M. S. Ko, H. J. Ko, J. W. Jung, M. S. Oh, B. Youn, and J. H. Kim. 2010. Reduction effect of airborne pollutants in pig building by air cleaner operated plasma ion. J. Env. Hlth. Sci. 36, 306-312.
  9. Ko, K. B., H. D. Lee, Y. H. Lee, Y. C. Byeon, G. W. Nam, and M. H. Jo. 2005. Fabrication of small size plasma reactor and study on the characteristics of ozone, negative ion and OH radical production. Korean Society Environ. Eng. 35, 674-676.
  10. Lin, C. Y. and C. S. Li. 2002. Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci. Technol. 36, 474-478. https://doi.org/10.1080/027868202753571296
  11. Louise, A. F., F. G. Lindsey, B. B. Clive, J. S. Simone, S. Andrew, J. N. Catherine, and G. K. Kevin. 2007. Bactericidal action of positive and negative ions in air. BMC Microbiology 7, 1-9. https://doi.org/10.1186/1471-2180-7-1
  12. Molhave, L. and M. Krzyanowski. 2003. The right to healthy indoor air: status by 2002. Indoor Air 13, 50-53. https://doi.org/10.1034/j.1600-0668.13.s.6.7.x
  13. Nishikawa, K. 2006. Mechanism for bacterial inactivation by positively and negatively charged cluster ions. Sharp Tech. J. 94, 20-24.
  14. Oh, M. D., T. S. Bae, and S. C. Kim. 1992. Experimental study on air ionization phenomena in the super clean room. SAREK J. AC & R 4, 72-81.
  15. Oxford, J. S. 2008. Higher concentrations of plasmacluster ions boost virus inactivation and elimination inhibit 99.9% of airborne H5N1 avian influenza virus. Sharp Press Release. No. 08-028.
  16. Sharma, M. and J. B. Hudson. 2008. Ozone gas is an effective and paractical antibacterial agent. AM. J. Infect. Control. 36, 559-563. https://doi.org/10.1016/j.ajic.2007.10.021
  17. Son, J. K. and M. D. Oh. 1991. Simulation of air ion diffusion flow in clean room flow field. SAREK Summer Annual Conference. 255-261.
  18. Thomas, C. W., J. L. Tung, J. Niu, and B. K. Hung. 2005. Determination of ozone emission from a domestic air cleaner and decay parameters using environmental chamber tests. Indoor. Built. Environ. 14, 29-37. https://doi.org/10.1177/1420326X05049648
  19. Yu, G. H., J. O. Chae, W. H. Kim, W. Wei and H. Wang. 2007. A study on non-thermal plasma reactor for generation of negative ions. Transactions of the KSME B. 5, 2344-2347.