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Abstract 

In this paper, we propose a new image descriptor, that is, a rotation invariant histogram of oriented gradients (RIHOG). RIHOG overcomes a 

disadvantage of the histogram of oriented gradients (HOG), which is very sensitive to image rotation. The HOG only uses magnitude values 

of a pixel without considering neighboring pixels. The RIHOG uses the accumulated relative magnitude values of corresponding relative 

orientation calculated with neighboring pixels, which has an effect on reducing the sensitivity to image rotation. The performance of RIHOG 

is verified via the index of classification and classification of Brodatz texture data. 
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1. Introduction 

 

Recently, various algorithms for extracting local image 

feature have been studied for object matching, target detection, 

and texture classification. One of the most popular image 

descriptor is the scale invariant feature transform (SIFT), which 

is introduced by Lowe [1]. SIFT has illumination, scale, 

rotation, and affine invariant properties. It has applied to 

various vision based objects recognition and matching systems 

[2-6]. In addition, various modified SIFT algorithms including 

PCA-SIFT [7] have been studied for different applications [8-

10]. However, matching systems using SIFT needs relatively 

long running time compared with systems using other general 

image features, so SIFT is actually not suitable for real-time 

object detection or classification. 

The SIFT is a sort of sparse descriptor which first detects 

keypoints (interest points) of a given image and then generates 

descriptors at keypoint locations. The other descriptor which is 

called dense descriptor uses the method that extracts features 

from all over the given image without detecting keypoints. The 

histogram of oriented gradients (HOG) which is proposed by 

Dalal and Triggs [11] is one of the most popular dense 

descriptor. The aim of the HOG is to describe an image by a set 

of local oriented gradients histogram. These histograms 

represent occurrences of specific gradient orientation in a local 

part of images. HOG is usually used to detect a specific object 

from images. Especially, HOG shows good performance for 

human detection [11-13]. However, it has a disadvantage that is 

very sensitive to image rotation. Therefore, HOG is not good 

choice for classification of textures or objects which can often 

be detected as rotated image. 

 In this paper, we propose a new image descriptor which is a 

rotation invariant histogram of oriented gradients (RIHOG). 

RIHOG is a kind of dense image descriptors and it 

fundamentally follows characteristics of HOG that uses 

oriented gradients. We develop the RIHOG using the fact that 

relative orientation between a specific pixel and its neighboring 

pixels cannot be changed according to image rotation. By 

constructing histogram using those relative orientation and 

magnitude values, RIHOG can be robust against image rotation. 

In this paper, we verify the performance of our proposed 

descriptor, RIHOG through texture classifications. Brodatz 

textures [15] which are rotated with specific angles are used for 

performance verification, and we compare the performance of 

RIHOG with that of HOG and SIFT. 

In Section 2, we briefly introduce HOG and introduce 

RIHOG in Section 3. In Section 4, we verify the performance 

of RIHOG through Brodatz textures classification and compare 

it with HOG and SIFT. 

 

 

2. Histogram of Oriented Gradients  

 

The aim of HOG is to describe an image with a local 

oriented gradient histogram. These histograms represent 

occurrences of specific gradient orientation in a local part of 

images. The HOG can be calculated by three step-sequence: 

gradient computation, orientation binning, and histogram 

generation [11]. 

 In gradient computation step, the gradient of an image is 

obtained by applying two one-dimensional filters, which are (-1 

0 1) for horizontal direction and (-1 0 1)T for vertical direction. 

Either a signed or unsigned gradient can be used; in our case, 

we use signed gradient whose values range from -  to  .  

The next step is orientation binning, which is used to 
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compute the histogram of orientation. For orientation binning, 

the image should be divided into blocks of predefined size. 

Further, for histogram generation, the range of each bin is 

determined. For example, if the signed gradient is divided into 

6 bins with same range, then the range of each bin is 60 degrees 

( / 3  radians).  

In the histogram generation step, we impose values on 

histogram of each block. According to the orientation of the 

gradient, the magnitude of the gradient is accumulated to the 

bin of the histogram. 

Because the HOG shows occurrences of specific gradient 

orientation, the histogram can be considerably changed by 

image rotation as shown in Figure 1. Therefore, HOG is not 

suitable as feature vectors for classification of objects which 

are often detected as rotated images or texture images. 

 

 
Fig. 1. Histogram of oriented gradients of a book image and the 

rotated image of the same book 

 

 

3. Rotation Invariant Histogram of Oriented 

Gradients  

 

In this section, we introduce our proposed image descriptor, 

RIHOG. RIHOG uses a method that accumulates relative 

magnitude values of corresponding relative orientation between 

a pixel and its neighboring pixels. 

 

3.1. Gradient computation 

This step is same with the first step of constructing HOG, 

gradient computation. In other words, the gradient of an image 

is obtained by filtering it with two one-dimensional filters, 

which are (-1 0 1) for horizontal direction and (-1 0 1)T for 

vertical direction. Next, magnitude and orientation values are 

obtained from those horizontal and vertical gradient values. 

These magnitude and orientation values which are generated 

from each pixel are stored for next step. 

 

3.2. Histogram construction 

RIHOG is constructed using relative orientation and 

magnitude values between a pixel and its neighboring pixels. In 

the case of HOG, the histogram is constructed by accumulating 

magnitude value of each pixel according to orientation value of 

the pixel after generating orientation and magnitude of every 

pixel. However; in the case of RIHOG which we propose in 

this paper, the histogram is constructed at each pixel using 

relative orientation and magnitude, and the final histogram is 

constructed by accumulating these all histograms. 

The relative orientation of a pixel is calculated by difference 

between the orientation of the pixel and orientation of 

neighboring pixels. In other words, assuming that orientation of 

a pixel is o , and orientation of n neighboring pixels of 

corresponding pixel is i  (e.g. 1 2 8, , ,     in Figure 3.), 

we define relative orientation as  o i  . In this paper, 

because we define range of the orientation as      , the 

relative orientation which is outside the pre-defined range is 

defined as follows: 

 

2
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o i o i
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if

if
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The relative magnitude is also regenerated by the relative 

values between the magnitude of the pixel and magnitude of 

neighboring pixels. If accumulating relative magnitude value is 

negative, the essential characteristic of accumulated value can 

be lost by reduction of histogram value. Therefore, relative 

magnitude should be positive.  

In this paper, we propose three ways of calculating relative 

magnitude as follows: 

 

1) RIHOG1 : Relative magnitude is the absolute value of 

the difference between magnitude of a pixel and 

magnitude of neighboring pixels.  

       i o iM M M    (2) 

This value shows not ratio but absolute difference of 

oM  and iM , and has disadvantage that cannot 

separate the case of o iM M and i oM M .  

 

2) RIHOG2 : Basically, the second method uses the 

absolute value of the difference between magnitude of a 

pixel and magnitude of neighboring pixels which is 

same with RIHOG1. However, two histograms are 

generated for the case of o iM M  and i oM M .  

       i o iM M M    (3) 

This value shows not ratio but absolute difference of 

oM  and iM , and has disadvantage that dimension of 

the feature vector should be double size of the other 

RIHOG methods as expanding histogram. 

 

3) RIHOG3 : Relative magnitude of RIHOG3 uses   
1tan  value as follows: 
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i
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M
M
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 (4) 

This value shows not absolute difference but ratio of   

oM  and iM , so it has different values in the case of   

o iM M  and i oM M .  

 

where magnitude of a pixel is oM , and magnitude of n 

neighboring pixels of corresponding pixel is i  and iM . (e.g. 

1,M  2 8, ,M M    in Figure 3.) 

After obtaining the relative orientation and magnitude values 

of neighboring pixels, a histogram is constructed by those 

values at each pixel. An orientation bin is determined by a 

relative orientation. Next, the relative magnitude value is 

accumulated at the orientation bin in histogram and those 

accumulated values are normalized. Figure 2 shows brief 

illustration of RIHOG generation, and Figure 3 shows process 

of generating RIHOG using 8 neighboring pixels. 

 

 

Fig. 2. Brief illustration of rotation invariant histogram of 

oriented gradients 

 

 

Fig. 3. Brief illustration of rotation invariant histogram of 

oriented gradients and three kinds of relative magnitude 

After obtaining histograms which are generated by relative 

orientation and magnitude of neighboring pixels at each pixel, 

all histograms are accumulated, and the accumulated values of 

each orientation bin are normalized. Therefore, accumulated 

magnitude values of each orientation bin are always larger than 

0, and smaller than 1.  

 

3.3. Neighboring step 

In this paper, we basically define neighboring pixels as 8 

pixels which are next to a specific pixel [19]. 

However, we can redefine the neighboring pixels as pixels 

which are located n pixels away from the corresponding pixel. 

In this paper, concatenations of histograms which use different 

neighboring steps are also used as feature vectors as shown in 

Figure 4. 

 

 

Fig. 4. Neighboring steps and new histogram generation using 

concatenation of RIHOGs of different neighboring steps 

 

 

4. Experiment  

 

4.1. Database  

We use 111 Brodatz texture data for experiment [15]. (see 

Table 1) Figure 5 shows several kinds of Brodatz texture data. 

For performance verification experiment, we generate 12 new 

data for each texture which are rotated with specific angle and 

cut by 128 128  size as shown in Figure 6. 
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Fig. 5. Example images of Brodatz texture: (from upper-left 

image) D1, D2, D3, D5, D7, D10, D25, D46, D48, D50, D54, 

D67, D69, D91, D99, D107 

 
Fig. 6. Rotated Brodatz texture images: each texture is rotated 

with certain angles (from 0o to 330o with 30o intervals) and cut 

by 128 128  size at the center of the rotated texture image 

 

Table I. Database for performance verification 

 
Number of 

texture 
Number of 

rotation 

Total 
number of 

data 

Brodatz 
texture 

111 12 1332 

 

4.2. Index of classification 

In this section, we introduce an index of classification and 

show the index of classification of RIHOGs using data that we 

mentioned in Section 4.1. An index of classification is 

generated by distance between data which are included 

different classes and distance between data included in the 

same class. The index of classification can be used to expect 

that how well these data can be classified. The index of 

classification of class i can be represented as follows: 

 

Index of 
classification 

for class i 
= 

Average distance between data 
in class i and all data in different classes 

Average distance between data 
in class i 

 

According to above definition of the index of classification, 

the smaller distance between data included in the same class is 

and the larger distance between data included in different 

classes is, the larger the index of classification is. In other 

words, we can expect more correct classification result when 

the index of classification is relatively large. 

 

 

Fig. 7. Index of classification of each class : 8-dimensional 

HOG (8 orientation bins, 1 block), 8-dimensional RIHOG1 (8 

orientation bins, 1 neighboring step), 8-dimensional RIHOG2 

(4 orientation bins, 1 neighboring step), 8-dimensional 

RIHOG3 (8 orientation bins, 1 neighboring step) 

 

We compare the index of classification of HOG and three 

kinds of RIHOGs using rotated Brodatz texture images which 

we mentioned in Section 4.1. We use 8-dimensional HOG and 

RIHOG. Figure 7 shows the index of classification of 8-

dimensional HOG and three kinds of 8-dimensional RIHOGs 

for each class of Brodatz textures, and Table 2 shows average, 

minimum and maximum index of classification of 8-

dimensional HOG and three kinds of 8-dimensional RIHOGs. 

On average, RIHOG 3 shows the largest index of classification. 

 

Table II. Minimum, maximum, and average Index of 

classification : 8-dimensional HOG (8 orientation bins, 1 block), 

8-dimensional RIHOG1 (8 orientation bins, 1 neighboring step), 

8-dimensional RIHOG2 (4 orientation bins, 1 neighboring step), 

8-dimensional RIHOG3 (8 orientation bins, 1 neighboring step) 

Histogram 
Index of classification 

Minimum Maximum Average 

HOG 0.10 2.03 0.37 

RIHOG1 1.23 28.10 9.57 

RIHOG2 0.35 17.12 4.39 

RIHOG3 1.14 28.21 10.16 

 

4.3. Texture classification using the nearest neighbor 

method 

In this section, we show texture classification result using the 

nearest neighbor method. We randomly select 7 texture data as 

training data and 5 data as test sample data among 12 rotated 

texture images for each Brodatz texture. In other words, 555 

test sample texture data and 777 training texture data are used 

for classification. We compare result of 8, 16, and 32-

dimensional HOG and three kinds of RIHOGs as shown in 

Table III (a)-(d). 

In addition, we also classifies textures using SIFT. We use 

the most general 128-dimensional descriptors, and regard class 

label of training data which has the largest number of matching 

pairs with the test sample data as classification result. 

Average number of SIFT descriptors for one 128 128  

texture data is 1371, and matching one test sample texture data 

with all training textures using SIFT descriptors, on average, 

takes 97.54 sec. On the other hand, in the case of three kinds of 

RIHOGs, only one RIHOG vector is generated from one 

texture data, and classification by matching all 32-dimensional 

RIHOGs test sample data with all RIHOGs training data using 

the nearest neighbor method, on average, takes only 0.1216 sec. 

(The hardware spec. of system is 2.66 GHz CPU, 4G RAM and 

the development software is MATLAB 7.9.)  

Table III (a)-(e) and Figure 6 show classification result of 

HOG, three kinds of RIHOGs, and SIFT. On average, RIHOG3 

shows the best classification performance among three kinds of 

RIHOGs, and several cases of RIHOG show similar or better 

classification result than SIFT, although feature dimensions and 

classification time of RIHOG are much less than those of SIFT. 
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The best classification results of three kinds of RIHOGs are 

95.5 percent accuracy for 32-dimensional RIHOG1 (8 

orientation bins, and 4 neighboring steps), 90.81 percent 

accuracy for 32-dimensional RIHOG2 (8 orientation bins, and 

2 neighboring steps), and 95.31 percent accuracy for 32-

dimensional RIHOG3 (16 orientation bins, and 2 neighboring 

steps). The classification result using 128-dimensional SIFT 

descriptors is 94.96 percent accuracy. 

 

 

Fig. 8. Classification accuracy of HOG, three kinds of RIHOGs, 

and SIFT (The best case of 8, 16, and 32-dimensional HOG and 

RIHOG) 

 

Table III-(a). Classification results of HOG 

HOG 

Dimension 
Number of 

orientation bin 
Neighboring 

step 
Classification 

accuracy 

8 8 1 11.71 

16 
8 1, 2 11.17 

16 1 20.90 

32 

8 1, 2, 3, 4 11.53 

16 1, 2 20.00 

32 1 22.16 

Average 16.25 

 

Table III-(b). Classification results of RIHOG1 

RIHOG 1 

Dimension 
Number of 

orientation bin 
Neighboring 

step 
Classification 

accuracy 

8 8 1 71.17 

16 
8 1, 2 90.81 

16 1 81.98 

32 

8 1, 2, 3, 4 95.50 

16 1, 2 92.97 

32 1 79.28 

Average 85.29 

 

Table III-(c). Classification results of RIHOG2 

RIHOG 2 

Dimension 
Number of 

orientation bin 
Neighboring 

step 
Classification 

accuracy 

8 4 1 56.21 

16 
4 1, 2 80.90 

8 1 78.56 

32 

4 1, 2, 3, 4 89.01 

8 1, 2 90.81 

16 1 85.59 

Average 85.29 

Table III-(d). Classification results of RIHOG3 

RIHOG 3 

Dimension 
Number of 

orientation bin 
Neighboring 

step 
Classification 

accuracy 

8 8 1 7.40 

16 
8 1, 2 92.79 

16 1 86.67 

32 

8 1, 2, 3, 4 94.23 

16 1, 2 95.13 

32 1 87.03 

Average 88.74 

 

Table III-(e). Classification results of SIFT 

SIFT 

Dimension 
Average number of descriptors 
for one 128x128 texture image 

Classification 
accuracy 

128 1371 94.96 

 

 

5. Conclusions 

 

In this paper, we propose a new image descriptor, the rotation 

invariant histogram of oriented gradients. In order to overcome a 

disadvantage of HOG which is very sensitive to image rotation, 

the rotation invariant histogram of oriented gradients uses 

method that accumulates relative magnitude values of 

corresponding relative orientation calculated with neighboring 

pixels. We show performance of RIHOG through the index of 

classification and Brodatz texture classification. 

Our proposed RIHOG shows relatively large index of 

classification and much better texture classification result than 

HOG. In addition, some of classification results of RIHOG are 

similar or better than that of SIFT, although dimension and 

classification time of RIHOG are much less than those of SIFT. 

Because RIHOG has a remarkable characteristic which is 

robust against image rotation, we can expect that RIHOG can be 

applied to many different applications. 
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