DOI QR코드

DOI QR Code

Antidiabetic Synergistic Effects of Medicinal Plant Extract Mixtures on db/db Mice

db/db mice에 대한 약용 식물추출 혼합물의 항당뇨 상승효과

  • Roh, Sang-Geun (Department of Biology, College of Natural Sciences, Pusan National University) ;
  • Choi, Won-Chul (Department of Biology, College of Natural Sciences, Pusan National University)
  • Received : 2010.10.27
  • Accepted : 2011.02.11
  • Published : 2011.02.28

Abstract

This study investigates the effects of Psidium guajava L. leaf (Pg) extract, Lagerstroemia speciosa L. leaf (Ls) extract, and mixture A (Pg, Ls, Morus indica L. leaf, Pinus densiflora needles, Acanthopanax senticosus M. roots extract) on db/db mice. For four weeks, db/db mice were fed powdered extracts of Pg, Ls, and mixture A. Compared to the diabetic control, extracts of Pg, Ls and mixture A decreased body weight, glucose and insulin. The greatest decreases were caused by mixture A. These extracts decreased the levels of total cholesterol, triglyceride and free fatty acid compared to the diabetic control. The antihyperlipidemic effect of mixture A was the greatest. Mixture A also significantly decreased injuries of Langerhans' islets compared to the diabetic control. Mixture A showed a beneficial synergistic effect due to the supplementary pharmacological actions of the ingredients in contains, indicating that it improved hyperglycemia without the side effect of weight gain.

본 연구는 db/db mice에 대한 구아바 잎(Pg), 바나바 잎(Ls) 추출물 그리고 혼합물 A (바나바, 구아바, 뽕, 솔잎 그리고 가시오가피 뿌리 추출물)의 효과를 조사하였다. 4주간 db/db mice에 이들 추출물을 섭취시킨 결과 Pg, Ls 그리고 혼합물 A의 섭취는 당뇨 대조군에 비해 체중, 혈당, 인슐린을 감소시켰으며 이들 중에서 혼합물 A의 감소효과가 가장 높았다. 이들 추출물은 당뇨 대조군에 비해 총 콜레스테롤, 중성지방, 유리지방산을 감소시켰으며 이들 중에서 혼합물 A의 항고지혈증 효과가 가장 뛰어났다. 또한 혼합물 A는 당뇨 대조군에 비해 Langerhans' islets의 손상을 유의하게 감소시켰다. 따라서 혼합물 A는 포함된 구성물질의 상호보완적인 약리작용에 의해 체중증가의 부작용이 없이 고혈당을 개선시키는 유익한 상승효과를 발휘한 것으로 나타났다.

Keywords

References

  1. Andallu, B. and N. C. Varadacharyulu. 2003. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabeticrats. Clin. Chim. Acta 338, 3-10. https://doi.org/10.1016/S0009-8981(03)00322-X
  2. Anderson, R. A. and M. M. Polansky. 2002. Tea enhances insulin activity. J. Agric. Food Chem. 50, 7182-7186. https://doi.org/10.1021/jf020514c
  3. Bailey, C. J. and C. Day. 1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12, 553-564. https://doi.org/10.2337/diacare.12.8.553
  4. Begum, S., S. I. Hassan, B. S. Siddiqui, F. Shaheen, M. N. Ghayur, and A. H. Gilani. 2002. Triterpenoids from the leaves of Psidium guajava. Phytochemistry 61, 399-403. https://doi.org/10.1016/S0031-9422(02)00190-5
  5. Broadhurst, C. L., M. M. Polansky, and R. A. Anderson. 2000. Insulin-like biological activity of culinary and medical plant aqueous extracts in vitro. J. Agric. Food Chem. 48, 849-852. https://doi.org/10.1021/jf9904517
  6. Cetto, A. A. and H. Wiedenfiend. 2001. Hypoglycemic effect of Cecropia obtusifolia on STZ diabetic rats. J. Ethnopharmacol. 78, 145-149. https://doi.org/10.1016/S0378-8741(01)00335-X
  7. Chen, H. Y. and G. C. Yen. 2007. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem. 101, 686-694. https://doi.org/10.1016/j.foodchem.2006.02.047
  8. Devaraj, S., N. Kaul, F. Schonlau, P. Rohdewald, and I. Jialal. 2002. $Pycnogenol^{(R)}$ supplementation increases antioxidant capacity and has a favourable effect on the lipid profile in humans. Lipids 37, 931-934. https://doi.org/10.1007/s11745-006-0982-3
  9. Ernst, E. 1997. Plants with hypoglycemic activity in human. Phytomedicine 4, 73-78. https://doi.org/10.1016/S0944-7113(97)80031-1
  10. Fonteles, M. C., L. C. Huang, and J. Larner. 1996. Infusion of pH 2.0 D-chiro-inositol glycan insulin putative mediator normalizes plasma glucose in streptozotocin diabetic rats at a dose equivalent to insulin without inducing hypoglycemia. Diabetologia 39, 731-734. https://doi.org/10.1007/BF00418546
  11. Garcia, F. 1940. On the hypoglycemic effect of decoction of Lagerstroemia speciosa leaves (banaba) administered orally. J. Phil. Med. Assoc. 20, 395-402.
  12. Gorinstein, S., G. W. Kulasek, E. Bartnikowska, M. Leontowicz, M. Zemser, M. Morawiec, and S. Trakhtenberg. 1998. The influence of persimmon peel and persimmon pulp on the lipid metabolism and antioxidant activity of rats fed cholesterol. J. Nutr. Biochem. 9, 223-227. https://doi.org/10.1016/S0955-2863(98)00003-5
  13. Hayashi, T., H. Maruyama, R. Kasai, K. Hattori, S. Takasuga, O. Hazeki, K. Yamasaki, and T. Tanaka. 2002. Ellagitannins from Lagerstroemia speciosa as Activators of Glucose Transport in Fat Cells. Planta Med. 68, 173-175. https://doi.org/10.1055/s-2002-20251
  14. Holman, R. R. and R. C. Turner. 1991. Oral agents and insulin in the treatment of NIDDM. In Pickup, J. and G. Williams. (eds.), pp. 467-469, Text Book of Diabetes. Blackwell, Oxford.
  15. Hong, J. H., M. S. Lee, E. Y. Bae, Y. H. Kim, H. Oh, W. K. Oh, B. Y. Kim, and J. S. Ahn. 2004. Screening for the inhibitory activity of medicinal plants against protein tyrosine phosphatase 1B. Korean J. Pharmacogn. 35, 16-21.
  16. Kakuda, T., I. Sakane, T. Takihara, Y. Ozaki, H. Takeuchi, and M. Kuroyanagi. 1996. Hypoglycemic effect of extracts from Lagerstroemia speciosa L. leaves in genetically diabetic KK-AY mice. Biosci. Biotechnol. Biochem. 60, 204-208. https://doi.org/10.1271/bbb.60.204
  17. Kameswara, R. B., R. Giri, M. M. Kesavulu, and C. Apparao. 1997. Herbal medicine: in the management of diabetes mellitus. pp. 33-35, Manphar Vaidhya Patrika.
  18. Kim, Y. H., Y. K. Jeong, M. H. Wang, W. Y. Lee, and H. I. Rhee. 2005. Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition 21, 756-761. https://doi.org/10.1016/j.nut.2004.10.014
  19. Kim, S. H., S. H. Hyun, and S. Y. Choung. 2006. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol. 104, 119-123. https://doi.org/10.1016/j.jep.2005.08.059
  20. Kimura, T., K. Nakagawa, H. Kubota, Y. Kojima, Y. Goto, K. Yamagishi, S. Oita, S. Oikawa, and T. Miyazawa. 2007. Food-grade mulberry power enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in human. J. Agric. Food Chem. 55, 5869-5874. https://doi.org/10.1021/jf062680g
  21. Lee, Y. A., E. J. Cho, T. Tanaka, and T. Yokozawa. 2007. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J. Nutr. Sci. Vitaminol. 53, 287-292. https://doi.org/10.3177/jnsv.53.287
  22. Liu, T. P., C. S. Lee, S. S. Liou, I. M. Liu, and J. T. Cheng. 2005. Improvement of insulin resistance by Acanthopanax senticosus root in fructose-rich chow-fed rats. Clin. Exp. Pharmacol. Physiol. 32, 649-654. https://doi.org/10.1111/j.0305-1870.2005.04245.x
  23. Lozoya, X., M. Meckes, M. Abou-Zaid, J. Tortoriello, C. Nozzolillo, and J. T. Arnason. 1994. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch. Med. Res. 25, 11-15.
  24. Mai, T. T. and N. V. Chuyen. 2007. Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci. Biotechnol. Biochem. 71, 69-76. https://doi.org/10.1271/bbb.60373
  25. Meckes, M., F. Calzada, J. Tortoriello, J. L. Gonzalez, and M. Martinez. 1996. Terpenoids isolated from Psidium guajava hexane extract with depressant activity on central nervous system. Phytother. Res. 10, 600-603. https://doi.org/10.1002/(SICI)1099-1573(199611)10:7<600::AID-PTR918>3.0.CO;2-7
  26. Miura, T., N. Ueda, K. Yamada, M. Fukushima, T. Ishida, T. Kaneko, F. Matsuyama, and Y. Seino. 2006. Antidiabetic effects of corosolic acid in KK-Ay diabetic mice. Bio. Pharm. Bull. 29, 585-587. https://doi.org/10.1248/bpb.29.585
  27. Moller, D. E. 2001. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821-827. https://doi.org/10.1038/414821a
  28. Oh, W. K., C. H. Lee, M. S. Lee, E. Y. Bae, C. B. Sohn, H. Oh, B. Y. Kim, and J. S. Ahn. 2005. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol. 96, 411-415. https://doi.org/10.1016/j.jep.2004.09.041
  29. Okuda, T., T. Yoshida, T. Hatano, K. Yazaki, Y. Ikegami, and T. Shingu. 1987. Guavins A, C and D, complex tannins from Psidium Guajava. Chem. Pharm. Bull. 35, 443-446. https://doi.org/10.1248/cpb.35.443
  30. Onogi, A., K. Osawa, H. Yasuda, A. Sakai, H. Morita, and H. Itokawa. 1993. Flavonol glycosides from the leaves of Morus alba L. Nat. Med. 47, 423-425.
  31. Park, S. Y., S. Y. Chang, C. S. Yook, and T. Nohara. 2000. New 3,4-seco-lupane-type triterpene glycosides from Acanthopanax senticosus forma inermis. J. Nat. Prod. 63, 1630-1633. https://doi.org/10.1021/np000277c
  32. Powers, A. C. 2008. Diabetes mellitus. In Fauci, A. S., E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo,, J. L. Jameson, J. Loscalzo (eds.), pp. 2275-2304, Harrison’s Principles of Internal Medicine. 17th eds. McGraw-Hill Companies, New York.
  33. Roh, S. G., J. H. Kim, and W. C. Choi. 2009. Antidiabetic synergetic effects of plant extract-mixtures in streptozotocin-diabetes rats. J. Life Sci. 19, 334-342. https://doi.org/10.5352/JLS.2009.19.3.334
  34. Sachdewa, A. and L. D. Khemani. 2003. Effect of Hibiscus rosa sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J. Ethnopharmacol. 89, 61-66. https://doi.org/10.1016/S0378-8741(03)00230-7
  35. Sunagawa, M., S. Shimada, Z. Zhang, A. Oonishi, M. Nakamura, and T. Kosugi. 2004. Plasma insulin concentration was increased by long-term ingestion of guava juice in spontaneous non-insulin-dependent diabetes mellitus (NIDDM) rats. J. Health Sci. 50, 674-678. https://doi.org/10.1248/jhs.50.674
  36. Suzuki, Y., T. Unno, M. Ushitani, K. Hayashi, and T. Kakuda. 1999. Antiobesity activity of extracts from Lagerstroemia speciosa L. leaves on female KK-Ay mice. J. Nutr. Sci. Vitaminol. 45, 791-795. https://doi.org/10.3177/jnsv.45.791
  37. Tanaka, T., N. Ishida, M. Ishimatsu, G. Nonaka, and I. Nishioka. 1992. Tannins and related compounds. CXVI. Six new complex tannins, guajavins, psidinins and psiguavin from the bark of Psidium guajava L. Chem. Pharm. Bull. 40, 2092-2098. https://doi.org/10.1248/cpb.40.2092
  38. Tang, L. Q., W. Wei, L. M. Chen, and S. Liu. 2006. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J. Ethnopharmacol. 108, 109-115. https://doi.org/10.1016/j.jep.2006.04.019
  39. Taniguchi, S., N. Asano, F. Tomino, and I. Miwa. 1998. Potentiation of glucose-induced insulin secretion by fagomine, a pseudo-sugar isolated from mulberry leaves. Horm. Metab. Res. 30, 679-683. https://doi.org/10.1055/s-2007-978957
  40. Verspohl, E. J., K. Bauer, and E. Neddermann. 2005. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro. Phytother. Res. 19, 203-206. https://doi.org/10.1002/ptr.1643
  41. Vertichevan, T. and M. Jegadeesan. 2002. Anti-diabetic activity of alcholic extracts of Aerva lanata (L.) Juss, ex Schultes in rats. J. Ethnopharmacol. 80, 103-107. https://doi.org/10.1016/S0378-8741(01)00412-3
  42. Zhang, B. and D. E. Moller. 2000. New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol. 4, 461-467. https://doi.org/10.1016/S1367-5931(00)00103-4

Cited by

  1. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice vol.19, pp.8, 2016, https://doi.org/10.1089/jmf.2016.3665
  2. Effects of Oenanthe javanica and Allium tuberosum on Lipid Content in Rats Fed a High-fat·High-cholesterol Diet vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.302
  3. Development of Bitter Melon Juice Mixed with Condensed Oat Juice and Its Hypoglycemic Effect on Streptozotocin-induced Diabetic Rats vol.25, pp.2, 2016, https://doi.org/10.5934/kjhe.2016.25.2.227