DOI QR코드

DOI QR Code

Electrical and Structural Properties of Lead Free 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO Ceramics

비납계 0.98 (Na0.44K0.52)Nb0.84O3-0.02Li0.04 (Sb0.06Ta0.1)O3-0.5 mol%CuO 세라믹스의 전기적, 구조적 특성

  • Lee, Seung-Hwan (Department of Electronics Materials Engineering, Kwangwoon University) ;
  • Nam, Sung-Pill (Department of Ceramic Engineering, Eng. Res. Insti., Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, Eng. Res. Insti., Gyeongsang National University) ;
  • Lee, Young-Hie (Department of Electronics Materials Engineering, Kwangwoon University)
  • 이승환 (광운대학교 전자재료공학과) ;
  • 남성필 (경상대학교 세라믹공학과) ;
  • 이성갑 (경상대학교 세라믹공학과) ;
  • 이영희 (광운대학교 전자재료공학과)
  • Received : 2010.11.23
  • Accepted : 2010.12.16
  • Published : 2011.02.01

Abstract

The 0.98 ($Na_{0.44}K_{0.52})Nb_{0.84}O_3-0.02Li_{0.04}$ ($Sb_{0.06}Ta_{0.1})O_3-0.5$ mol%CuO ceramics have been fabircated by ordinary sintering technique and the effect of various calcination method on the electrical propertis and microstructure have been studied. It was observed that the various calcination method influenced the elelctrical properties and structural properties of the 0.98NKN-0.02LST-0.5 mol%CuO ceramics with the optimum piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) at room temperature of about $155{\rho}C/N$ and 0.349, respectively, from 0.98NKN-0.02LST-0.5 mol%CuO ceramics sample. The curie temperature ($T_c$) of this ceramic was found at $440^{\circ}C$. The 0.98NKN-0.02LST-0.5 mol%CuO ceramics are a promising lead-free piezoelectric ceramics.

Keywords

References

  1. S. H. Park, C. W Ahn, S. N. and J. S. Song, The japan Society of Applied Physics, 43, L1072 (2004). https://doi.org/10.1143/JJAP.43.L1072
  2. Ruzhong Zuo, Jurgen Rodel Renzheng Cen, and Longtu Li, J. Am. Ceram. Soc., 89[6], 2010 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x
  3. Bao-Quan Min, Jin-Feng Wang, Peng Qi, and Guo-Zhong Zang,, Journal of Applied Physics, 101, 054103 (2007). https://doi.org/10.1063/1.2436923
  4. Y. H. Kim, D. Y Heo, W. P. Tai, and J. S. Lee, Journal of the Korean Ceramic Society, 45, 6, 363 (2008). https://doi.org/10.4191/KCERS.2008.45.6.363
  5. S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, Materials Research Bulletin 42 3580 (2008).
  6. C. W. Ahn, H. Y. Park, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Sensors and Actuators A, 136, 255 (2007). https://doi.org/10.1016/j.sna.2006.10.036
  7. Z. X. Chen, Y. Chen, and Y. S. Jiang, J. Phys. Chem. B, 106, 9986 (2002). https://doi.org/10.1021/jp013301j
  8. S. H. Moon, Y. S. Ham, Y. H. Lee, S. M. Nam, J. H. Koh, J. Korean Phys. Soc. 56, 1 399 (2010). https://doi.org/10.3938/jkps.56.399
  9. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85[18] 4121 (2004). https://doi.org/10.1063/1.1813636
  10. R. J. Xie, Y. Akimune, R. Wang, N. Hirosaki, and T. Nishimuna, Jpn. J. Appl. Phys., 42[12] 7404 (2003). https://doi.org/10.1143/JJAP.42.7404
  11. C. Zaldo, D.S Gilld, R. W. Eason, J. Mendiola, and P. J. Chandler, Appl. Phys. Lett., 65[4] 502 (1994). https://doi.org/10.1063/1.112280
  12. K. Yamanouchi, H. Odagawa, T. Kojima, and T. Matsumura, Electron. Lett., 33[3] 193 (1997). https://doi.org/10.1049/el:19970145

Cited by

  1. Influence of Sintering Holding Time on Flexural Strength of Dental CAD/CAM Zirconia vol.43, pp.2, 2016, https://doi.org/10.14815/kjdm.2016.43.2.185