DOI QR코드

DOI QR Code

K-사용자 X 네트워크에서 다중안테나를 이용한 완전 간섭정렬기법

Perfect Interference Alignment for K-user MIMO X Network

  • 박성호 (고려대학교 통신시스템기술협동과정 통신시스템연구실) ;
  • 박기홍 (고려대학교 전기전자공학과) ;
  • 김명진 (고려대학교 전기전자공학과) ;
  • 고영채 (고려대학교 전기전자공학과)
  • Park, Seong-Ho (Telecommunication System Technology, Korea University) ;
  • Park, Ki-Hong (Department of Electrical Engineering, Korea University) ;
  • Kim, Myeong-Jin (Department of Electrical Engineering, Korea University) ;
  • Ko, Young-Chai (Department of Electrical Engineering, Korea University)
  • 투고 : 2010.12.16
  • 심사 : 2011.01.14
  • 발행 : 2011.02.01

초록

In wireless X networks where all transmitters send the independent messages to all receivers, the theoretical bound on the degrees of freedom (DOF) and interference alignment (IA) scheme for its achievability are given by Cadambe and Jafar [1]. However, IA scheme for wireless X network may be infeasible in practice unless the transmitters have the perfect channel information. In addition, if the transmitter with single antenna uses time-varying channel coefficients as a beamforming vector, the infinite channel extension is required to achieve the theoretical bound on the DOF of wireless X networks with perfect IA scheme. In this paper, we consider K-user MIMO X network where K transmitters and K receivers have M antennas each. While the beamforming vectors have been constructed with multiple channel uses over multiple time slot in the earlier work, we consider the beamforming vectors constructed only by a spatial signature over unit time. Accordingly the channel information at the transmitters can be available instantaneously. Then we propose the perfect IA scheme with no channel extension. Based on our sum-rate analysis and the simulation results, we confirm that our proposed scheme can achieve MK/2 DOF which is quite close to the theoretical bound on the DOF region of wireless X networks.

키워드

참고문헌

  1. V. Cadambe and S. Jafar, IEEE Trans. Inf. Theory, 55, 3893 (2009). https://doi.org/10.1109/TIT.2009.2025541
  2. P. Viswanath and D. Tse, IEEE Trans. Inf. Theory, 49, 1912 (2003). https://doi.org/10.1109/TIT.2003.814483
  3. G. Caire and S. Shamai, IEEE Trans. Inf. Theory, 49, 1691 (2003). https://doi.org/10.1109/TIT.2003.813523
  4. A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, IEEE J. Sel. Areas Commun., 21, 684 (2003). https://doi.org/10.1109/JSAC.2003.810294
  5. I. Sason, IEEE Int. Symp. Inf. Theory (ISIT), 50, 1345 (2004). https://doi.org/10.1109/TIT.2004.828151
  6. S. Vishwanath and S. Jafar, IEEE Inf. Theory Workshop, 365 (2004).
  7. A. Motahari and A. Khandani, IEEE Trans. Inf. Theory, 55, 620 (2009). https://doi.org/10.1109/TIT.2008.2009807
  8. S. Jafar and M. Fakhereddin, IEEE Trans. Inf. Theory, 53, 2637 (2007). https://doi.org/10.1109/TIT.2007.899557
  9. L. Zheng and D. Tse, IEEE Trans. Inf. Theory, 49, 1073 (2003). https://doi.org/10.1109/TIT.2003.810646
  10. S. Jafar and S. Shamai, IEEE Trans. Inf. Theory, 54, 151 (2008). https://doi.org/10.1109/TIT.2007.911262
  11. V. Cadambe and S. Jafar, IEEE Trans. Inf. Theory, 54, 3425 (2008). https://doi.org/10.1109/TIT.2008.926344
  12. M. Maddah-Ali, A. Motahari, and A. Khandani, IEEE Trans. Inf. Theory, 54, 3457 (2008). https://doi.org/10.1109/TIT.2008.926460
  13. H. Sung, S.-H. Park, K.-J. Lee, and I. Lee, IEEE GLOBECOM, 1 (2009).
  14. L.-U. Choi and R. Murch, IEEE Trans. Wireless Commun., 3, 20 (2004). https://doi.org/10.1109/TWC.2003.821148