DOI QR코드

DOI QR Code

Ice Formation on the Outer Surface of a Vertical Tube with Inside Refrigerant Boiling

관 내부 냉매비등이 있는 수직관 외부 얼음 형성 연구

  • Nguyen, Minh Phu (School of Mechanical and Automotive Engineering, Univ. of Ulsan.) ;
  • Lee, Geun-Sik (School of Mechanical and Automotive Engineering, Univ. of Ulsan.)
  • ;
  • 이근식 (울산대학교 기계자동차공학부)
  • Received : 2010.05.25
  • Accepted : 2010.12.30
  • Published : 2011.02.01

Abstract

An ice-making model has been developed and analyzed in this study. The effects of the following on the ice formation on the outer surface of a tube in which a refrigerant flows and boils are numerically investigated: thermal resistance of the refrigerant and thermal resistance of the ice formed on the outer surface of the tube. The ice thickness and related variables are analyzed in the case of the refrigerants R22 and R134a by using the expressions for phase-change heat transfer and boiling heat transfer coefficient. Vapor qualities of the refrigerants range from 0 to 0.8. As a result, up to the first 30 min, the internal convection resistance is higher than the thermal resistance of the ice on the external surface of the tube. However, after about 30 min, the thermal resistance of the ice increases remarkably due to the increase in the ice thickness. Thus, the heat flux to the refrigerant decreases, and further, the refrigerant quality and the boiling heat transfer coefficient also decrease. As the heat transfer coefficient of R22 is higher than that of R134a, the mass of the ice formed when R22 is used is higher than that formed when R134a is used.

얼음 제조와 잠열 저장 등에서 수직관 내부를 저온의 냉매를 흘려, 관 외부의 물을 얼리는 과정에서 내부 냉매의 비등열저항과 외부 얼음열저항이 얼음형성에 미치는 영향에 대하여 조사되었다. 상변화 및 비등 열전달 관계식들이 도입되어 얼음두께와 관련변수들이 해석되었으며, 작동유체로는 냉매 22 와 냉매 134a가 사용되었다. 이들의 건도는 0-0.8 범위이다. 해석결과, 최초 약 30 분까지는 내부냉매의 대류저항이 얼음의 전도저항에 비하여 높으나, 그 이후 얼음의 두께 증가에 따른 얼음전도저항의 현저한 증가로 인하여 냉매에 공급되는 열플럭스가 감소되므로 냉매 측 건도와 비등 및 대류열전달계수도 현저히 감소함을 알 수 있었다. 냉매 22 는 대류열전달계수가 냉매 134a 보다 높아서 단위 면적 당 더 많은 얼음을 생성할 수 있음을 알 수 있었다.

Keywords

References

  1. Lee, A. H. W. and Jones, J. W., 1996, "Modeling of an Ice-on-coil Thermal Energy Storage System," Energy Conversion and Management, Vol. 37, No. 10, pp. 1493-1507. https://doi.org/10.1016/0196-8904(95)00224-3
  2. Sasaguchi, K., Kusano, K. and Viskanta, R., 1997, "A Numerical Analysis of Solid-liquid Phase Change Heat Transfer around a Single and Two Horizontal, Vertically Spaced Cylinders in a Rectangular Cavity," Int. J. Heat Mass Transfer, Vol. 40, No.6, pp. 1343-1354. https://doi.org/10.1016/S0017-9310(96)00210-4
  3. Buyruk, E., Fertelli, A. and Sonmez, N., 2009, "Numerical Investigation for Solidification around Various Cylinder Geometries," Journal of Scientific and Industrial Research, Vol. 68, pp. 122-129.
  4. Ismail, K. A. R. and de Jesus, A. B., 2001, "Parametric Study of Solidification of PCM around a Cylinder for Ice-bank Applications," International Journal of Refrigeration, Vol. 24, No. 8, pp. 809-822. https://doi.org/10.1016/S0140-7007(00)00059-1
  5. Ismail, K. A. R. and Henriquez, J. R., 2002, "Numerical and Experimental Study of Spherical Capsules Packed Bed Latent Heat Storage System," Applied Thermal Engineering, Vol. 22, No. 15, pp. 1705-1716. https://doi.org/10.1016/S1359-4311(02)00080-7
  6. Ismail, K. A. R., Henriquez, J. R. and da Silva, T. M., 2003, "A Parametric Study on Ice Formation inside a Spherical Capsule," International Journal of Thermal Sciences, Vol. 42, No. 9, pp. 881-887. https://doi.org/10.1016/S1290-0729(03)00060-7
  7. Mohamed, M. M., 2005, "Solidification of Phase Change Material on Vertical Cylindrical Surface in Holdup Air Bubbles," International Journal of Refrigeration, Vol. 28, No. 3, pp. 403-411. https://doi.org/10.1016/j.ijrefrig.2004.07.026
  8. Cliche, A. and Lacroix, M., 2006, "Optimization of Ice Making in Laminar Falling Films," Energy Conversion and Management, Vol. 47, No. 15-16, pp. 2260-2270. https://doi.org/10.1016/j.enconman.2005.11.018
  9. Zhao, J. D., Liu, N. and Kang, Y. M., 2008, "Optimization of Ice Making Period for Ice Storage System with Flake Ice Maker," Energy and Buildings, Vol. 40, No. 9, pp. 1623-1627. https://doi.org/10.1016/j.enbuild.2008.01.008
  10. Vargas, J. V. C. and Bejan, A., 1995, "Fundamentals of Ice Making by Convection Cooling Followed by Contact Melting," Int. J. Heat Mass Transfer, Vol. 38, No. 15, pp. 2833-2841. https://doi.org/10.1016/0017-9310(95)00014-Z
  11. Kandlikar, S. G., 1990, "A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes," Journal of Heat Transfer, Vol. 112, No. 1, pp. 219-228. https://doi.org/10.1115/1.2910348
  12. Zambrana, J., Leo, T. J. and Perez-del-Notario, P., 2008, "Vertical Tube Length Calculation Based on Available Heat Transfer Coefficient Expressions for the Subcooled Flow Boiling Region," Applied Thermal Engineering, Vol. 28, No. 5-6, pp. 499-513. https://doi.org/10.1016/j.applthermaleng.2007.05.003
  13. Lienhard IV, J. H. and Lienhard V, J. H., 2006, A Heat Transfer Textbook, Phlogiston Press, pp. 422-457.
  14. Klein, S.A., 2003, Engineering Equation Solver, Commercial version 6.883-3D.