References
- Norris, J. R., 1997, Markov Chains, Cambridge University Press.
- Baum, L. E. and Petre, T., 1966, Statistical Inference for Probabilistic Functions of Finite State Markov Chain, Ann. Math. Stat., Vol. 37, pp. 1554-1563. https://doi.org/10.1214/aoms/1177699147
- Baum, L. E. and Egon, J. A., 1967, An Inequality with Applications to Statistical Estimation for Probabilistic Functions of a Markov Process and to a Model for Ecology, Bull. Amer, Meteorol. Soc., Vol. 73, pp. 360-363. https://doi.org/10.1090/S0002-9904-1967-11751-8
- Levinson, S. E., Rabiner, L. R. and Sondhi, M. M., 1983, An Introduction to the Application of the Probabilistic Functions of a Markov Process to Automatic Speech Recognition, Bell Syst. Tech. J., Vol. 62, No. 4, pp. 1035-1074. https://doi.org/10.1002/j.1538-7305.1983.tb03114.x
- Rabiner, L. R., 1989, A Tutorial on Hidden Markov Models and Selected Application in Speech Recognition, Proceedings of the IEEE, Vol. 77, No. 2, pp. 257-286. https://doi.org/10.1109/5.18626
- Lee, J. M., Hwang, Y., Kim, S.-J. and Song, C.-S., 2003, Pattern Recognition of Rotor Fault Signal Using Hidden Markov Model, Transactions of the Korean Society of Mechanical Engineering A, Vol. 27, No. 11, pp. 1864-1872. https://doi.org/10.3795/KSME-A.2003.27.11.1864
- Lee, J. M., Kim, S.-J., Hwang, Y. and Song, C.-S., 2004, Diagnosis of Mechanical Fault Signals Using Continuous Hidden Markov Model, Journal of Sound and Vibration, Vol. 276, pp. 1065-1080. https://doi.org/10.1016/j.jsv.2003.08.021
- Li, Z., Wu, Z., He, Y. and Fulei, C., 2005, Hidden Markov Model-based Fault Diagnostic Method in Speed-up and Speed-down Process for Rotating Machinery, Mechanical Systems and Signal Processing, Vol. 19, pp. 329-339. https://doi.org/10.1016/j.ymssp.2004.01.001
- Zhou, Z.-J., Hu, C.-H., Xu, D.-L., Chen, M.-Y. and Zhou, D.-H., 2010, A Model for Real-time Failure Prognosis based on Hidden Markov Model and Belief Rule Base, European Journal of Operational Research, Vol. 207, pp. 265-283.
- Chen, J., Hsu, T.-Y., Chen, C.-C. and Cheng, Y.-C., 2010, Monitoring Combustion using HMM Probabilistic Reasoning in Dynamic Flame Images, Applied Energy, Vol. 87, pp. 2169-2179. https://doi.org/10.1016/j.apenergy.2009.11.008
- Lee, J. M., Hwang, Y., Kim S.-J. and Song, C.-S., 2003, Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 13, No. 1, pp. 48-55. https://doi.org/10.5050/KSNVN.2003.13.1.048
- Society for the Research of Information Statistics, 2001, Comprehension of Likelihood, Kyo Woo Sa.
- Hwang, Y. and Lee, J. M., 2010, Method for Monitoring Welding Deficiency, Korea Patent Application No. 10-2010-0012970.
- Hwang, Y. and Lee, J. M., 2010, Method of Monitoring Machine Condition, U.S. Patent Application No. 12/859,753.
- Cho, S.-M., Choi, K.-W. and Lee, K.-W., 2000, Trends of Monitoring Technology for the Arc Welding Quality, Journal of the Korean Welding Society, Vol. 18, No. 4, pp. 417-423.
- Cho, S.-M., 2005, Application of Quality Monitoring Technology at Arc and Resistance Welding Manufacturing Site, Proceeding of the Korean Welding Society Conference, Seoul, Korea.