References
- S. Bae, Positive entire solutions of semilinear elliptic equations with quadratically vanishing coefficient, J. Differential Equations 237 (2007), no. 1, 159-197. https://doi.org/10.1016/j.jde.2007.03.003
-
S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in
$R^{n}$ , J. Differential Equations 194 (2003), no. 2, 460-499. https://doi.org/10.1016/S0022-0396(03)00172-4 - S. Bae, T.-K. Chang, and D.-H. Pank, Infinite multiplicity of positive entire solutions for a semilinear elliptic equation, J. Differential Equations 181 (2002), no. 2, 367-387. https://doi.org/10.1006/jdeq.2001.4079
-
S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semi- linear elliptic equation on
$R^{n}$ , Math. Ann. 320 (2001), no. 1, 191-210. https://doi.org/10.1007/PL00004468 - R. Bamon, I. Flores, and M. del Pino, Ground states of semilinear elliptic equations: a geometric approach, Ann. Inst. H. Poincare Anal. Non Lineaire 17 (2000), no. 5, 551-581. https://doi.org/10.1016/S0294-1449(00)00126-8
- G. Bernard, An inhomogeneous semilinear equation in entire space, J. Differential Equations 125 (1996), no. 1, 184-214. https://doi.org/10.1006/jdeq.1996.0029
- Y.-B. Deng, Y. Li, and Y. Liu, On the stability of the positive radial steady states for a semilinear Cauchy problem, Nonlinear Anal. 54 (2003), no. 2, 291-318. https://doi.org/10.1016/S0362-546X(03)00064-6
- Y.-B. Deng, Y. Li, and F. Yang, On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem, J. Differential Equations 228 (2006), no. 2, 507-529. https://doi.org/10.1016/j.jde.2006.02.010
-
C.-F. Gui, Positive entire solutions of the equation
$\Delta$ u + f(x, u) = 0, J. Differential Equations 99 (1992), no. 2, 245-280. https://doi.org/10.1016/0022-0396(92)90023-G -
C.-F. Gui, On positive entire solutions of the elliptic equation
$\Delta$ u + K(x)$u^{p}$ = 0 and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 2, 225-237. https://doi.org/10.1017/S0308210500022708 -
C.-F. Gui, W.-M. Ni, and X.-F. Wang, On the stability and instability of positive steady states of a semilinear heat equation in
$R^{n}$ , Comm. Pure Appl. Math. 45 (1992), no. 9, 1153-1181. https://doi.org/10.1002/cpa.3160450906 - C.-F. Gui, W.-M. Ni, and X.-F. Wang, Further study on a nonlinear heat equation, J. Differential Equations 169 (2001), no. 2, 588-613. https://doi.org/10.1006/jdeq.2000.3909
- K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505. https://doi.org/10.3792/pja/1195519254
- D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972), 241-269.
- T.-Y. Lee and W.-M. Ni, Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc. 333 (1992), no. 1, 365-378. https://doi.org/10.2307/2154114
-
Y. Li, Remarks on a semilinear elliptic equation on
$R^{n}$ , J. Differential Equations 74 (1988), no. 1, 34-49. https://doi.org/10.1016/0022-0396(88)90017-4 -
Y. Li, Asymptotic behavior of positive solutions of equation
$\Delta$ u+K(x)$u^{p}$ = 0 in$R^{n}$ , J. Differential Equations 95 (1992), no. 2, 304-330. https://doi.org/10.1016/0022-0396(92)90034-K -
Y. Li and W.-M. Ni, On conformal scalar curvature equations in
$R^{n}$ , Duke Math. J. 57 (1988), no. 3, 895-924. https://doi.org/10.1215/S0012-7094-88-05740-7 - Y. Liu, Y. Li, and Y.-B. Deng, Separation property of solutions for a semilinear elliptic equation, J. Differential Equations 163 (2000), no. 2, 381-406. https://doi.org/10.1006/jdeq.1999.3735
-
W.-M. Ni, On the elliptic equation
$\Delta$ u+K(x)$u^{(n+2)/(n-2)}$ = 0, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493-529. https://doi.org/10.1512/iumj.1982.31.31040 - W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), no. 1, 1-32. https://doi.org/10.1007/BF03167899
- J. Serrin and H. Zou, Classification of positive solutions of quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 3 (1994), no. 1, 1-25. https://doi.org/10.12775/TMNA.1994.001
- X.-F. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), no. 2, 549-590. https://doi.org/10.2307/2154232
- F. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29-40. https://doi.org/10.1007/BF02761845
-
E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to
$\Delta$ u + K(lxl)$u^{p}$ = 0 in$R^{n}$ , Arch. Rational Mech. Anal. 124 (1993), no. 3, 239-259. https://doi.org/10.1007/BF00953068