References
- J. S. Choa and H. O. Kim, Composition operators on some F-algebras of holomorphic functions, Nihonkai Math. J. 7 (1996), no. 1, 29-39.
-
P. L. Duren, Theory of
$H^{p}$ Spaces, Academic Press, New York, 1970. - P. L. Duren, Smootheness of functions generated by Riesz products, Proc. Amer. Math. Soc. 16 (1965), 1263-1268.
-
P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on
$H^{p}$ spaces with 0 < p < 1, J. Reine Angew. Math. 238 (1969), 32-60. - C. M. Eoff, Frechet envelopes of certain algebras of analytic functions, Michigan Math. J. 35 (1988), no. 3, 413-426. https://doi.org/10.1307/mmj/1029003822
-
C. M. Eoff, A representation of
$N_{\alpha}^{+}$ as a union of weighted Hardy spaces, Complex Variables Theory Appl. 23 (1993), no. 3-4, 189-199. https://doi.org/10.1080/17476939308814684 - J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
- K. Hoffman, Banach Spaces of Analytic functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- J. L. Kelley, I. Namioka et al., Linear Topological Spaces, D. Van Nostrand Co., Inc., Princeton, N.J. 1963.
- E. Landau, Darstellung und Begrundung einiger neurer Ergebnisse der Funktiontheorie, Springer, Berlin, 1929.
- Y. Matsugu, Invariant subspaces of the Privalov spaces, Far East J. Math. Sci. (FJMS) 2 (2000), no. 4, 633-643.
- R. Mestrovic and Z. Pavicevic, The logarithmic analogue of Szego's theorem, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 97-102.
- R. Mestrovic and A. V. Subbotin, Multipliers and linear functionals of I. I. Privalov spaces of functions holomorphic in the disk, Dokl. Akad. Nauk 365 (1999), no. 4, 452- 454.
- J. E. McCarthy, Topologies on the Smirnov class, J. Funct. Anal. 104 (1992), no. 1, 229-241. https://doi.org/10.1016/0022-1236(92)90096-2
-
N. Mochizuki, Algebras of holomorphic functions between
$H^{p}$ and$N_{*}$ , Proc. Amer. Math. Soc. 105 (1989), no. 4, 898-902. - I. I. Privalov, Boundary properties of Analytic Functions, Moscow University Press, Moscow, 1950.
- F. Riesz, Uber die Fourierkoeffizienten einer stetigen Funktion von beschrankter Schwankung, Math. Z. 2 (1918), 312-315. https://doi.org/10.1007/BF01199414
-
J. W. Roberts and M. Stoll, Prime and principal ideals in the algebra
$N^{+}$ , Arch. Math. (Basel) 27 (1976), no. 4, 387-393; Correction, Arch. Math. (Basel) 30 (1978), 672. https://doi.org/10.1007/BF01224691 - J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), no. 1, 187-202. https://doi.org/10.1215/S0012-7094-76-04316-7
- M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977/78), no. 2, 139-158.
- A. Wilansky, Topology for Analysis, Ginn and Co., Waltham, 1970.
-
N. Yanagihara, Multipliers and linear functionals for the class
$N^{+}$ , Trans. Amer. Math. Soc. 180 (1973), 449-461. -
N. Yanagihara,The containing Frechet space for the class
$N^{+}$ , Duke Math. J. 40 (1973), 93-103. https://doi.org/10.1215/S0012-7094-73-04010-6 - A. I. Zayed, Topological vector spaces of analytic functions, Complex Variables Theory Appl. 2 (1983), no. 1, 27-50. https://doi.org/10.1080/17476938308814030
- A. I. Zayed,Recoverability of some classes of analytic functions from their boundary values, Proc. Amer. Math. Soc. 87 (1983), no. 3, 493-498. https://doi.org/10.1090/S0002-9939-1983-0684645-X
- A. Zygmund, Trigonometric Series. 2nd ed. Vols. I, II, Cambridge University Press, New York 1959.
Cited by
- Topological and Functional Properties of SomeF-Algebras of Holomorphic Functions vol.2015, 2015, https://doi.org/10.1155/2015/850709
-
OnF-AlgebrasMp (1
https://doi.org/10.1155/2014/901726