References
- Y. Ahn, D. Dou, and K. Park, Entropy dimension and variational principle, to appear in Studia Mathematica.
- J. Cassaigne, Constructing innite words of intermediate complexity, Developments in language theory, 173-184, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003. https://doi.org/10.1007/3-540-45005-X_15
- J. Cassaigne and J. Karhumaki, Toeplitz words, generalized periodicity and periodically iterated morphisms, European J. Combin. 18 (1997), no. 5, 497-510. https://doi.org/10.1006/eujc.1996.0110
- D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260. https://doi.org/10.1112/jlms/s1-8.4.254
- D. Dou, W. Huang, and K. Park, Entropy dimension of topological dynamical systems, to appear in Transactions of AMS.
- D. Dou and K. Park, Examples of entropy generating sequence, preprint.
- S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), no. 1-3, 145-154. https://doi.org/10.1016/S0012-365X(98)00400-2
- S. Ferenczi and K. Park, Entropy dimensions and a class of constructive examples, Discrete Contin. Dyn. Syst. 17 (2007), no. 1, 133-141. https://doi.org/10.1007/s10626-006-0011-y
- K. Jacobs and M. Keane, 0 - 1-sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131. https://doi.org/10.1007/BF00537017
- N. G. Markley and M. E. Paul, Almost automorphic symbolic minimal sets without unique ergodicity, Israel J. Math. 34 (1979), no. 3, 259-272. https://doi.org/10.1007/BF02760887
- S. Williams, Toeplitz minimal ows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 95-107. https://doi.org/10.1007/BF00534085
Cited by
- COLORINGS OF TREES WITH LINEAR, INTERMEDIATE AND EXPONENTIAL SUBBALL COMPLEXITY vol.52, pp.6, 2015, https://doi.org/10.4134/JKMS.2015.52.6.1123