References
- A. L. Besse, Manifolds All of Whose Geodesics are Closed, Springer-Verlag, Berlin-New York, 1978.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser, Boston, Inc., Boston, MA, 2002.
- E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77-93. https://doi.org/10.1016/S0926-2245(00)00021-8
- E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544. https://doi.org/10.1023/A:1013779805244
- G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky Mountain J. Math. 37 (2007), no. 5, 1435-1458. https://doi.org/10.1216/rmjm/1194275928
- P. Carpenter, A. Gray, and T. J. Willmore, The curvature of Einstein symmetric spaces, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 129, 45-64. https://doi.org/10.1093/qmath/33.1.45
- Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks of Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42. https://doi.org/10.1007/s00605-008-0534-4
- S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math., (to appear), DOI:10.1093/qmath/hap025.
- P. Nurowski and M. Pruzanowski, A four-dimensional example of a Ricci flat metric admitting almost-Kahler non-Kahler structure, Classical Quantum Gravity 16 (1999), no. 3, L9-L13. https://doi.org/10.1088/0264-9381/16/3/002
- T. Oguro, K. Sekigawa, and A. Yamada, Four-dimensional almost Kahler Einstein and weakly *-Einstein manifolds, Yokohama Math. J. 47 (1999), no. 1, 75-92.
-
J. H. Park and K. Sekigawa, When are the tangent sphere bundles of a Riemannian manifold
$\eta$ -Einstein?, Ann. Global Anal. Geom. 36 (2009), no. 3, 275-284. https://doi.org/10.1007/s10455-009-9160-1 - J. H. Park and K. Sekigawa, Notes on tangent sphere bundles of constant radii, J. Korean Math. Soc. 46 (2009), no. 6, 1255-1265. https://doi.org/10.4134/JKMS.2009.46.6.1255
- D. Perrone, Contact metric manifolds whose characteristic vector eld is a harmonic vector eld, Differential Geom. Appl. 20 (2004), no. 3, 367-378. https://doi.org/10.1016/j.difgeo.2003.12.007
- C. M. Wood, On the energy of a unit vector eld, Geom. Dedicata 64 (1997), no. 3, 319-330. https://doi.org/10.1023/A:1017976425512
Cited by
- H-contact unit tangent sphere bundles of Riemannian manifolds vol.49, 2016, https://doi.org/10.1016/j.difgeo.2016.09.002