Acknowledgement
Supported by : National Foundation of Kor
References
- R. J. Evans, Seventh power moments of Kloosterman sums, Israel J. Math. 175 (2010), 349-362. https://doi.org/10.1007/s11856-010-0014-0
- G. van der Geer, R. Schoof, and M. van der Vlugt, Weight formulas for ternary Melas codes, Math. Comp. 58 (1992), no. 198, 781-792. https://doi.org/10.1090/S0025-5718-1992-1122080-4
- K. Hulek, J. Spandaw, B. van Geemen, and D. van Straten, The modularity of theBarth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289. https://doi.org/10.1515/advg.2001.017
-
D. S. Kim, Gauss sums for
$O^{-}$ (2n; q), Acta Arith. 80 (1997), no. 4, 343-365. -
D. S. Kim,Exponential sums for
$O^{-}$ (2n; q) and their applications, Acta Arith. 97 (2001), no. 1, 67-86. https://doi.org/10.4064/aa97-1-4 - D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math. 126 (1998), no. 1, 55-71. https://doi.org/10.1007/BF01312455
- D. S. Kim, Exponential sums for symplectic groups and their applications, Acta Arith. 88 (1999), no. 2, 155-171. https://doi.org/10.4064/aa-88-2-155-171
- D. S. Kim, Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups, Adv. Math. Commun. 3 (2009), no. 2, 167-178. https://doi.org/10.3934/amc.2009.3.167
-
D. S. Kim, Ternary codes associated with
$O^{-}$ (2n; q) and power moments of Kloosterman sums with square arguments, submitted. - D. S. Kim, Recursive formulas generating power moments of multi-dimensional Kloosterman sums and m-multiple power moments of Kloosterman sums, submitted.
- D. S. Kim and J. H. Kim, Ternary codes associated with symplectic groups and power moments of Kloosterman sums with square arguments, submitted.
-
H. D. Kloosterman, On the representation of numbers in the form
$ax^{2}+by^{2}+cz^{2}+dt^{2}$ , Acta Math. 49 (1927), no. 3-4, 407-464. https://doi.org/10.1007/BF02564120 - R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Pless, Cambridge, 1987.
- R. Livne, Motivic orthogonal two-dimensional representations of Gal(Q/Q), Israel J. Math. 92 (1995), no. 1-3, 149-156. https://doi.org/10.1007/BF02762074
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1998.
- M. Moisio, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl. 14 (2008), no. 2, 515-531. https://doi.org/10.1016/j.ffa.2007.06.001
- C. Peters, J. Top, and M. van der Vlugt, The Hasse zeta function of a K3 surfacerelated to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. 432 (1992), 151-176.
- H. Salie, Uber die Kloostermanschen Summen S(u; v; q), Math. Z. 34 (1932), no. 1, 91-109. https://doi.org/10.1007/BF01180579
- I. E. Shpalinski, Exponential Sums in Coding Theory and Cryptography, Lecture Notes of Tutorial Lectures given at the Institute of Mathematics of the NUS, Singapore, July 23-26, 2001.