Abstract
A service robot can identify its own position relative to landmarks, the locations of which are known in advance. The main contribution of this research is that it gives various ways of making the self-localizing error smaller by referring to special landmarks which are developed as high gain reflection material and coded array associations. In this paper, the authors propose a set of indices to evaluate the accuracy of self-localizing methods using the selective reflection landmark and infrared projector, and the indices are derived from the sensitivity enhancement using 3D distortion calibration of camera. And then, the accurarcy of self-localizing a mobile robot with landmarks based on the indices is evaluated, and a rational way to minimize to reduce the computational cost of selecting the best self-localizing method. The simulation results show a high accuracy and a good performance.