DOI QR코드

DOI QR Code

Fabrication and Property of Water Level and Temperature Sensor for Medical Cooling System Using a Highly Sensitive GMR-SV Device

거대자기저항 스핀밸브 소자를 이용한 의료용 냉각기 수위 및 수온 센서의 제작과 특성

  • Park, Kwang-Jun (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Choi, Jong-Gu (Department of Western-Eastern Biomedical Engineering, Sangji University) ;
  • Lee, Sang-Suk (Department of Oriental Biomedical Engineering, Sangji University) ;
  • Lee, Bum-Ju (Jejoong Medical Co., Ltd.)
  • 박광준 (상지대학교 보건과학대학 한방의료공학과) ;
  • 최종구 (상지대학교 일반대학원 동서의료공학과) ;
  • 이상석 (상지대학교 보건과학대학 한방의료공학과) ;
  • 이범주 ((주)제중메디컬)
  • Received : 2010.12.22
  • Accepted : 2011.02.18
  • Published : 2011.02.28

Abstract

We fabricated a sensor for measuring the water level and water temperature using GMR-SV (giant magnetoresistance-spin valve) device, simultaneously. It could be applied to the medical cooling system of the potassium titanylphosphate KTP) laser system for the therapy of a benign prostatic hyperplasia. The middle point of GMR-SV device was set to the near position of a high magnetic sensitivity with 2.8%/Oe. The sensitivity for the water level and water temperature of the fabricated sensor were $400\;m{\Omega}/mm$ and $100\;m{\Omega}/^{\circ}C$, respectively.

DC 마그네트론 스퍼터링을 이용하여 제작한 고감도 거대자기저항 스핀밸브 박막 소자를 이용하여 수위 및 수온을 측정할 수 있는 센서를 제작하였다. 제작한 센서의 수위 및 수온 분해능은 각각 $400\;m{\Omega}/mm$$100\;m{\Omega}/^{\circ}C$ 이었으며, 이는 전립선 비대증 KTP(potassium titanyl phosphate) 레이저 치료기에서 냉각기의 수위 및 수온을 조절하는 센서로써 응용이 가능하다.

Keywords

References

  1. A. E. Te, Reviews in Urology 8, S24 (2006).
  2. E. Heinrich, F. Schiefelbein, and G. Schoen, Euro. Urology 52, 1632 (2007). https://doi.org/10.1016/j.eururo.2007.07.033
  3. R. S. Malek, R. S. Kuntzman, and D. M. Barrett, J. Urology 174, 1344 (2005). https://doi.org/10.1097/01.ju.0000173913.41401.67
  4. A. Bachmann and R. Ruszat, Minimally Invasive Therapy & Allied Technology 16, 5 (2007). https://doi.org/10.1080/13645700601157885
  5. B. Hayes, Prostate Cancer Prostatic Discussion 10, S10 (2007). https://doi.org/10.1038/sj.pcan.4500951
  6. L. Carroll, Tatyana R. Humphreys, Clinics in Dermatology 24, 2 (2006). https://doi.org/10.1016/j.clindermatol.2005.10.019
  7. D. R. Baselt, G. U. Lee, and R. J. Colton, The Journal of Vacuum Science and Technology 14, 789 (1996). https://doi.org/10.1116/1.588714
  8. F. A. Cotton, G. Wilkinson, and P. L. Gauss, Basic Iorganic Chemistry, Third Edition, John Wiley & Sons, Hoboken, NJ (1996) Chapter 9.
  9. G. Du and B. Wang, Earth Science Frontiers 15, 142 (2008). https://doi.org/10.1016/S1872-5791(08)60047-0
  10. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics 14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  11. S. H. Park, K. S. Soh, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magnetics 13, 30 (2008). https://doi.org/10.4283/JMAG.2008.13.1.030
  12. M. C. Ahn, S. D. Choi, H. W. Joo, G. W. Kim, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Kor. Mag. Soc. 17, 156 (2007). https://doi.org/10.4283/JKMS.2007.17.4.156