DOI QR코드

DOI QR Code

Magnetic Field Dependence of Low Temperature Specific Heat Jump in Superconducting Crystal

초전도 결정의 저온 비열 점프의 자기장 의존성

  • Kim, Cheol-Ho (Department of Electronic and Optical Engineering, Honam Univiversity)
  • 김철호 (호남대학교 전자광공학과)
  • Received : 2010.12.06
  • Accepted : 2010.12.10
  • Published : 2011.02.27

Abstract

Specific heat of a crystal is the sum of electronic specific heat, which is the specific heat of conduction electrons, and lattice specific heat, which is the specific heat of the lattice. Since properties such as crystal structure and Debye temperature do not change even in the superconducting state, the lattice specific heat may remain unchanged between the normal and the superconducting state. The difference of specific heat between the normal and superconducting state may be caused only by the electronic specific heat difference between the normal and superconducting states. Critical temperature, at which transition occurs, becomes lower than $T_{c0}$ under the influence of a magnetic field. It is well known that specific heat also changes abruptly at this critical temperature, but magnetic field dependence of jump of specific heat has not yet been developed theoretically. In this paper, specific heat jump of superconducting crystals at low temperature is derived as an explicit function of applied magnetic field H by using the thermodynamic relations of A. C. Rose-Innes and E. H. Rhoderick. The derived specific heat jump is compared with experimental data for superconducting crystals of $MgCNi_3$, $LiTi_2O_4$ and $Nd_{0.5}Ca_{0.5}MnO_3$. Our specific heat jump function well explains the jump up or down phenomena of superconducting crystals.

Keywords

References

  1. S. Kishino, Physics of Superconductor Electronics, 1st ed., p.1, Maruzen, Tokyo (1993) (in Japanese).
  2. M. Tinkham, Introduction to Superconductivity, 3rd ed., p.18, Sangyotosho, Tokyo (1975) (in Japanese).
  3. T. Sakudo, Solid State Physics : Magnetism and Superconductivity, 1st ed., p.84, Shokabo, Tokyo (1993) (in Japanese).
  4. N. Michoshiba and K.Suzuki, Introduction to Physics of Superconductivity, 1st ed., p.1, Baifukan, Tokyo (1995) (in Japanese).
  5. M. Yamamura, Superconductor Engineering, 5th ed., p.1, Denkigakkai, Tokyo (1994) (in Japanese).
  6. H. Hiraka and Y. Endoh, J. Phys. Soc. Jpn., 68, 36 (1999). https://doi.org/10.1143/JPSJ.68.36
  7. J. H. Choi, H. Doh, E. M. Choi, H. J. Kim, S. I. Lee, T. Yamamoto, T. Kawae and K. Takeda, J. Phys. Soc. Jpn., 70, 3037 (2001). https://doi.org/10.1143/JPSJ.70.3037
  8. K. Machida and M. Ichioka, Phys. Rev. B, 77, 184515 (2008). https://doi.org/10.1103/PhysRevB.77.184515
  9. J. Baak, H. B. Brom, M. J. V. Menken and A. A. Menovsky, Phys. C Supercond., 162-164, 500 (1989). https://doi.org/10.1016/0921-4534(89)91125-8
  10. I. S. Eo and C. H. Kim, J. Kor. Cryst. Growth & Cryst. Tech., 14, 17 (2004).
  11. K. M. Khanna, M. S. Karap Kirui, T. W. Sakwa, P. K. Torongey, K. Y. Ayodo and S. Rotich, Indian J. Pure Appl. Phys., 45, 991 (2007).
  12. C. L. Huang, J. Y. Lin. C. P. Sun, T. K. Lee, J. D. Kim, E. M. Choi, S. I. Lee and H. D. Yang, Phy. Rev. B, 73, 012502 (2006). https://doi.org/10.1103/PhysRevB.73.012502
  13. A. Kallio, V. Braysy and J. Hissa, Phys. C Supercond., 364-365, 43 (2001). https://doi.org/10.1016/S0921-4534(01)00721-3
  14. C. P. Sun, J. Y. Lin, S. Mollah, P. L. Ho, H. D. Yang, F. C. Hsu, Y. C. Liao, and M. K. Wu, Phys. Rev. B, 70, 054519 (2004). https://doi.org/10.1103/PhysRevB.70.054519
  15. A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, 2nd ed., p.38, Pergamon Press, New York, (1978) (in Japanese).
  16. J. Kacmarcik, Z. Pribulova. C. Marcenat, P. Samuely, T. Klein, A. Demuer and S. I. Lee, J. Phys. Conf., 150, 052087 (2009). https://doi.org/10.1088/1742-6596/150/5/052087
  17. J. Lopez, O. F. de Lima, P. N. Lisboa-Filho and F. M. Araujo-Moreira, Phys. Rev. B, 66, 214402 (2002). https://doi.org/10.1103/PhysRevB.66.214402