DOI QR코드

DOI QR Code

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys

  • Im, Yeon-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Jeon, Young-Min (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Min-Su (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Lee, Yong-Hee (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Min-Kyun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Nam, Tae-Hyun (School of Materials Science and Engineering, Gyeongsang National University)
  • Received : 2010.12.10
  • Accepted : 2010.12.29
  • Published : 2011.02.28

Abstract

Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.

Keywords

References

  1. Y. Kudoh, M. Tokonami, S. Miyazaki, and K. Otsuka, Acta Metall. 33, 2049 (1985) [DOI: 10.1016/0001-6160(85)90128-2].
  2. M. Matsumoto and T. Honma, Proceeding of the 1st Japan Institute of Metals International Symposium on Martensite (Kobe, Japan 1976), p. 199.
  3. C. M. Hwang and C. M. Wayman, Metall. Trans. 15A, 1155 (1984) [DOI: 10.1007/bf02644710].
  4. V. N. Khachin, Y. I. Paskal, V. E. Gjunter, A. A. Monasevich, and V. P. Sivokha, Phys. Met. Metall. 46, 49 (1978).
  5. C. Kim and C. M. Hwang, Scripta Metall. 21, 959 (1987) [DOI: 10.1016/0036-9748(87)90133-5].
  6. T. H. Nam, D. W. Jung, J. S. Kim, and S. B. Kang, Mater. Lett. 52, 234 (2002) [DOI: 10.1016/s0167-577x(01)00424-4].
  7. Y. Shugo, H. Hasegawa and T. Honma, Bull. Res. Inst. Mineral Dress. Metall. Tohoku Univ. 37, 79 (1981).
  8. T. H. Nam, T. Saburi, Y. Kawamura, and K. Shimizu, Mater. Trans. JIM 31, 262 (1990). https://doi.org/10.2320/matertrans1989.31.262
  9. T. H. Nam, D. W. Chung, Noh J. P., and H. W. Lee, J. Mater. Sci. 36, 4181 (2001) [DOI: 10.1023/A:1017964806065].
  10. T. H. Nam, J. P. Noh, S. G. Hur, J. S. Kim, and S. B. Kang, Mater. Trans. 43, 802 (2002) [DOI: 10.2320/matertrans.43.802].
  11. H. C. Lin, C. H. Yang, K. M. Lin, and G. K. Hsu, J. Alloys Compd. 386, 157 (2005) [DOI: 10.1016/j.jallcom.2004.05.022].