DOI QR코드

DOI QR Code

Key Pose-based Proposal Distribution for Upper Body Pose Tracking

상반신 포즈 추적을 위한 키포즈 기반 예측분포

  • 오치민 (전남대학교 전자컴퓨터공학부) ;
  • 이칠우 (전남대학교 전자컴퓨터공학부)
  • Received : 2010.08.02
  • Accepted : 2010.10.14
  • Published : 2011.02.28

Abstract

Pictorial Structures is known as an effective method that recognizes and tracks human poses. In this paper, the upper body pose is also tracked by PS and a particle filter(PF). PF is one of dynamic programming methods. But Markov chain-based dynamic motion model which is used in dynamic programming methods such as PF, couldn't predict effectively the highly articulated upper body motions. Therefore PF often fails to track upper body pose. In this paper we propose the key pose-based proposal distribution for proper particle prediction based on the similarities between key poses and an upper body silhouette. In the experimental results we confirmed our 70.51% improved performance comparing with a conventional method.

Pictorial Structures(PS)는 동적 프로그래밍을 이용하여 인체의 포즈 추적 및 인식 하는 것에 매우 효과적인 방법으로 알려져 있다. 본 논문에서 상반신 포즈는 PS와 Particle filter(PF)에 의한 동적 프로그래밍 기법으로 추적된다. PF와 같은 동적프로그래밍에서 마코프 연쇄 (Markov Chain) 기반 동적 움직임 모델은 높은 자유도를 갖는 상반신 포즈를 예측하기 어려운 단점이 있다. 본 논문에서 제안하는 방법은 키포즈 기반 예측분포이며, 이것은 상반신 실루엣과 키포즈(Key Pose)들 사이의 유사도를 참고하여 파티클(Particle)을 적절히 예측하는 것이다. 실험 결과를 통해 제안된 방법은 기존 방법 성능을 70.51% 향상시킨 것을 확인하였다.

Keywords

References

  1. M. Andriluka, S. Roth and B. Schilele, "Pictorial Structures Revisited:People Detection and Articulated Pose Estimation", Int. Conf. Computer Vision & Pattern Recognition, pp.1014-1021, 2009. https://doi.org/10.1109/CVPR.2009.5206754
  2. H. Jiang, "Human Pose Estimation Using Consistent Max-Covering", Int. Conf. Computer Vision, pp.1357-1364, 2009. https://doi.org/10.1109/ICCV.2009.5459307
  3. X. Zhang, C. Li, X. Tong, W. Hu, S. Maybank, and Y. Zhang, "Efficient human pose estimation via parsing a tree structure based human model", Int. Conf. Computer Vision, pp. 1349-1356, 2009. https://doi.org/10.1109/ICCV.2009.5459306
  4. A. Agarwal and B. Triggs, "A Local Basis Representation for Estimating Human Pose from Cluttered Images", Asian Conf. Computer Vision, pp. 50-59, 2006.
  5. O. Freifeld, A. Weiss, S. Zuffi and M. J. Black, "Contour People: A Parameterized Model of 2D Articulated Human Shape", In Int. Conf. Computer Vision and Pattern Recognition, pp. 639-646, 2010. https://doi.org/10.1109/CVPR.2010.5540154
  6. S. Maskell, "A Tutorial on Particle Filters for On-line Nonlinear/Non-Gaussian Bayesian Tracking", IEEE Trans. Signal Processing, Vol. 50, No. 2, pp. 174-188, 2002. https://doi.org/10.1109/78.978374
  7. K. M. Manson, "Markov Chain Monte Carlo Posterior Sampling with the Hamiltonian method", Proc. Sensitivity Analysis of Model Output, pp. 456-467, 2001. https://doi.org/10.1117/12.431119
  8. M. W. Lee and I. Cohen, "Proposal Maps driven MCMC for Estimating Human Body Pose in Static Images", In Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp.334-341, 2004. https://doi.org/10.1109/CVPR.2004.1315183
  9. K. Okuma A. Taleghani N. de Freitas J. Little and D. Lowe, "A Boosted Particle Filter: Multitarget Detection and Tracking", European Conf. Computer Vision, pp. 28-39, 2004.
  10. S. X. Ju, M. J. Black and Y. Yacoob, "Cardboard People: A Parameterized Model of Articulated Image Motion", Int. Conf. Automatic Face and Gesture Recognition, pp. 38-44, 1996. https://doi.org/10.1109/AFGR.1996.557241
  11. Makoto Kato, Yen-Wei Chen and Gang Xu, "Articulated hand tracking by pca-ica approach", Int. Conf. Automatic Face and Gesture Recognition, pp. 329-334, 2006 https://doi.org/10.1109/FGR.2006.21
  12. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles and H. C. Wolf, "Parametric Correspondence and Chamfer Matching: Two New Technique for Image Matching", Int. Conf. Artificial Intelligence, pp. 1175-1177, 1997.
  13. E. A. Wan and R. van der Merwe, "The Unscented Kalman Filter for Nonlinear Estimation", Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 153-158, 2000. https://doi.org/10.1109/ASSPCC.2000.882463
  14. Borgefors and Gunilla "Hierearchical Chamfer Matching: A Parametric Edge Matching Algorithm", IEEE Trans. Pattern Anal. Mach. Intell., Vol. 6, pp. 849-865, Nov 1988. https://doi.org/10.1109/34.9107
  15. R. Kindermann and J. L. Snell, "Markov Random Fields and Their Applications", American Mathematical Society, Providence, RI, 1980.
  16. K. Nishiyama, "Fast and Effective Generation of the Proposal distribution for Particle filters", Vol 85(12), pp. 2412-2417, 2005. https://doi.org/10.1016/j.sigpro.2005.07.030
  17. J. Bourgain, On Lipschitz, "Embeddings of Finite Metric Spaces in Hilbert Space", Israel Journal of Mathematics, Vol. 52, pp. 46-52, 1985. https://doi.org/10.1007/BF02776078
  18. N. A. Setiawan, S. J. Hong, J. W. Kim and C. W. Lee, "Gaussian Mixture Model in Improved HLS Color Space for Human Silhouette Extraction", Int. Conf. Artificial Reality and Telexistence, pp. 732-741, 2006.