Population Analysis of the Intermediate Complex States During B-Z Transition of Non-CG-repeat DNA Duplexes Induced by the Zα Domain of Human ADAR1

Eun-Hae Lee, Yeo-Jin Seo, Hee-Eun Kim, Yeon-Mi Lee, Chong-Man Kim,^{†,*} and Joon-Hwa Lee^{*}

Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Gyeongnam 660-701, Korea. *E-mail: joonhwa@gnu.ac.kr *Department of Industrial and Management Engineering, Myongji University, Gyeonggi 449-728, Korea *E-mail: chongman@mju.ac.kr Received September 30, 2010, Accepted December 10, 2010

Key Words: NMR, Hydrogen exchange, Z-DNA, Confidence limit, ADAR1

Z-DNA contains nucleic acid bases in alternating anti- and syn-conformations along the nucleotide chain and has only one groove that is similar to the minor groove of B-DNA.¹⁻³ Z-DNA is in a higher energy conformation than B-DNA and is stabilized by negative supercoiling generated *in vivo*.^{2,3} Human ADAR1 has two left-handed Z-DNA binding domains at its NH2-terminus, Z α and Z β , preferentially binds Z-DNA, rather than B-DNA, with high binding affinity.⁴⁻⁶ The co-crystal structure of the Z α domain of human ADAR1 (Z α_{ADAR1}) bound to Z-DNA revealed that one monomeric $Z\alpha_{ADAR1}$ domain binds to one strand of double-stranded DNA and a second $Z\alpha_{ADAR1}$ monomer binds to the opposite strand with two-fold symmetry with respect to the DNA helical axis.⁷ A structural study showed that $Z\alpha_{ADAR1}$ binds to the Z-conformation of non-CG-repeat DNA duplexes through a common structural feature rather than by a specific sequence or structural alternations.⁸ A previous NMR study on a d(CGCGCG)₂-Z α_{ADAR1} complex⁹ suggests an *ac*tive-mono B-Z transition mechanism (see Fig. 1) in which the $Z\alpha_{ADAR1}$ protein first binds to B-DNA and then converts it to left-handed Z-DNA, a conformation that is then stabilized by the additional binding of a second $Z\alpha_{ADAR1}$ molecule.

Recently, we have reported NMR hydrogen exchange data of complexes between $Z\alpha_{ADAR1}$ and the non-CG-repeat DNA duplexes, d(CACGTG)₂ [referred to as CA6] or d(CGTACG)₂ [referred to as TA6], with a variety of protein-to-DNA (P/N) molar ratios.¹⁰ The k_{ex} data for the G4b of the CA6- $Z\alpha_{ADAR1}$ complex and for the G2b of the TA6- $Z\alpha_{ADAR1}$ complex showed significant changes as the Z-DNA fraction (f_Z) was increased (meaning that the P/N ratio increased) (*see* Fig. 2). These changes of the k_{ex} data can be explained by the presence of mixtures of two imino protons from B-form DNA (referred to as **B**) and

Figure 1. *Active-mono* B-Z transition mechanism of a 6-bp DNA duplex by two Z-DNA binding proteins. **B** and **Z** indicate the B-form and Z-form of the DNA duplex and **P** indicates the Z-DNA binding proteins.

B-DNA-Z α_{ADAR1} complex (referred to as **BP**) in the imino peaks as given by Eq. 1:¹⁰

$$k_{ex} = \frac{[B]k_{ex}^B + [BP]k_{ex}^{BP}}{[B] + [BP]} = k_{ex}^B + \frac{[BP]}{1 - Z_t} (k_{ex}^{BP} - k_{ex}^B)$$
(1)

where k_{ex}^{B} and k_{ex}^{BP} are the k_{ex} of the imino protons for the **B** and

Figure 2. (A) The k_{ex} values of the G4b imino proton for the CA6-Z α_{ADAR1} complex determined at 25 °C and (B) k_{ex} values of the G2b imino proton for the TA6-Z α_{ADAR1} complex determined at 15 °C as a function of the f_Z . Black solid lines are the best fit to Eq. 1, where the k_{ex} data were weighted by the inverse of their variance. The grey lines indicate their upper and lower confidence limits (95% confidence level).

BP states, respectively, and [**B**] and [**BP**] are the concentrations of the **B** and **BP** states, Z_t is the total concentration of Z-conformation. Thus, the correlation between the k_{ex} and f_Z data can be expressed by Eq. 2 as described in previous report:¹⁰

$$k_{ex} = k_{ex}^{B} + \frac{\left(k_{ex}^{BP} - k_{ex}^{B}\right)}{2(1-\alpha)(1-f_{Z})} \left\{ 1 + (K_{BZ}^{1} - 1)f_{Z} - \sqrt{\left(1 + (K_{BZ}^{1} - 1)f_{Z}\right)^{2} - 4K_{BZ}^{1}(1-\alpha)f_{Z}(1-f_{Z})} \right\}$$
(2)

where $K_{BZ}^{1} = [\mathbf{BP}]/[\mathbf{ZP}]$, and $\alpha (= K_{a}^{ZP_{2}}/K_{a}^{BP})$ is the ratio of the association constants (K_{a}) of the \mathbf{ZP}_{2} and \mathbf{BP} complex states. In the previous report,¹⁰ the α (CA6: 1.42; TA6 13.9), K_{BZ}^{1} (CA6: 0.4 ± 0.1 ; TA6: 6.3 ± 3.1), k_{ex}^{B} (CA6: $39.2 \pm 0.6 \text{ s}^{-1}$; TA6: $11.5 \pm 0.5 \text{ s}^{-1}$), and k_{ex}^{BP} (CA6: $10.2 \pm 3.1 \text{ s}^{-1}$; TA6: $22.2 \pm 5.3 \text{ s}^{-1}$) values of CA6 and TA6 complexed with $Z\alpha_{ADAR1}$ were determined by curve fitting k_{ex} of the imino protons as a function of f_{Z} with Eq. 2 (Fig. 2).¹⁰

In order to estimate the reliability of the proposed model in the previous study, we performed the iterative non-linear curve fitting k_{ex} of the imino protons in the CA6-Z α_{ADAR1} and TA6-Z α_{ADAR1} complexes as a function of f_Z with Eq. 2 using program Origin 7. The upper and lower confidence limits on the k_{ex} data of CA6 and TA6 complexed with Z α_{ADAR1} were evaluated by iterative non-linear curve fitting and the 95% confidence bands of the k_{ex} data are shown in Fig. 2. This result shows that the *active-mono* B-Z transition mechanism, which was proposed in the previous study,¹⁰ is suitable approach to understand the DNA sequence descrimination step of the Z α_{ADAR1} protein during B-Z transition.

The relative population of each complex state (such as **B**, **BP**, **ZP**, and **ZP**₂) as a function of the P/N ratio was determined from the f_Z and k_{ex} data, which were reported in previous study,¹⁰ as the following procedure. First, the [**BP**] values are calculated from the exchange data, k_{ex} , k_{ex}^B , and k_{ex}^{BP} , by using Eq. 3:

$$[BP] = \frac{k_{ex} - k_{ex}^B}{k_{ex}^{BP} - k_{ex}^B} (1 - Z_t)$$
(3)

where Z_t are determined from relative peak intensities of the imino proton resonances of the Z-form DNA. Second, the **[B]** values can be calculated by using the equation, **[B]** = $1 - Z_t -$ **[BP]**. Third, the concentration of the **ZP** state (**[ZP]**) is calculated from the flowing relation, **[ZP]** = **[BP]**/ K_{BZ}^1 . Forth, the concentration of the **ZP**₂ state (**[ZP**₂]) can be calculated by using the equation, **[ZP**₂] = $Z_t -$ **[ZP**]. The relative populations (including estimated errors) of the **B**, **BP**, **ZP**, and **ZP**₂ states in the CA6-Z α_{ADAR1} and TA6-Z α_{ADAR1} complexes as a function of the P/N ratio are shown in Fig. 3 and 4, respectively. Finally, the concentration of free Z α_{ADAR1} (**[P]**) could be calculated by the Eq. 4:

$$[P] = P_t - [BP] - [ZP] - 2[ZP_2]$$
(4)

where P_t is the total concentration of Z α_{ADAR1} .

From these concentrations, the association constants, K_a^{BP} =

Figure 3. The relative populations of the (A) **B**, (B) **BP**, (C) **ZP**, and (D) **ZP**₂ states within total DNA populations of the CA6 complexed with $hZ\alpha_{ADAR1}$ determined at 25°C. Solid lines are simulated relative population of each complex state determined as described in text.

 $[\mathbf{BP}]/[\mathbf{B}][\mathbf{P}]$ and $K_a^{ZP_2} = [\mathbf{ZP}_2]/[\mathbf{ZP}][\mathbf{P}]$, for the CA6- $Z\alpha_{ADAR1}$ and TA6- $Z\alpha_{ADAR1}$ complexes were calculated. The K_a^{BP} and $K_a^{ZP_2}$ values of CA6-Z α_{ADAR1} complex are $3.9 \pm 1.3 \times 10^3$ and $5.5 \pm 1.9 \times 10^3$, respectively.¹⁰ This means that, unlike the d(CGCGCG)₂-Z α_{ADAR1} complex,⁹ the Z α_{ADAR1} protein can bind to the B and ZP complex states with similar binding affnity. The relative population of each complex state for the CA6-Z α_{ADAR1} complex as a function of the P/N ratio could be calculated from these association constants and equilibirum constants for B-Z transition and the results are shown in Fig. 3 (solid lines). It was observed that [B] was gradually decreased, but [BP] and [**ZP**] were increased as the P/N ratio increased up to 2 (Fig. 3). In addition, the observation that [BP] is always smaller than [ZP] could be explained by the fact that $K_{BZ}^{1} < 1$ (Fig. 3). When the P/N ratio rose to 2, the **ZP**₂ complex was dominantly produced but [BP] and [ZP] were decreased as the P/N ratio increased because the added P preferentially bound to the ZP complex rather than the **B** and **BP** (Fig. 3).

Similarly, the K_a^{BP} and $K_a^{ZP_2}$ values of the TA6-Z α_{ADAR1} complex are 2.5 ± 0.9 × 10³ and 3.5 ± 1.3 × 10⁴, respectively.¹⁰ The relative population of each complex state for the TA6-Z α_{ADAR1} complex as a function of the P/N ratio are shown in Fig. 4 (solid lines). Similar to the CA6-Z α_{ADAR1} complex In the both complexes, it was observed that [**B**] was gradually decreased, but [**BP**] and [**ZP**] were increased as the P/N ratio increased up to 2 (Fig. 4). However, contrast to the CA6-Z α_{ADAR1} complex, it was observed that [**BP**] is always larger than [**ZP**], indicating that $K_{BZ}^{1} > 1$, (Fig. 4). When the P/N ratio rose to 2, the **ZP2** complex was dominantly produced but [**BP**] and [**ZP**] were decreased as the P/N ratio increased like CA6 (Fig. 4).

Interestingly, the simulated population (solid line in Fig. 3 and

Notes

Figure 4. The relative populations of the (A) **B**, (B) **BP**, (C) **ZP**, and (D) **ZP**₂ states within total DNA populations of the TA6 complexed with $hZ\alpha_{ADAR1}$ determined at 15°C. Solid lines are simulated relative population of each complex state determined as described in text.

4) of each complex data determined from the association constants and equilibirum constants for B-Z transition well matched to the experimental value (symbol in Fig. 3 and 4) determined from the f_Z and k_{ex} data. This indicates that our approach is able to calculate successfully the concentrations of the intermediate state during B-Z transition. This correlation between the relative population of each complex state and the P/N ratio as shown Fig. 3 and 4 can explain how the $Z\alpha_{ADAR1}$ protein recognizes the d(CGCGCG) sequence from d(CACGTG) and d(CGTACG) sequences in a long genomic DNA.

In summary, we derived the relative population of each complex state, which is thought to be produced during B-Z transition induced by $Z\alpha_{ADAR1}$, as a function of the P/N ratio. This approach provides the insight into the *active* B-Z transition mechanism and DNA sequence discrimination step of human Z-DNA binding protein, ADAR1.

Acknowledgments. This Work was supported by the National Research Foundation of Korea Grants [2010-0014199; NRF-C1ABA001-2010-0020480 to J.-H.L.] funded by the Korean Government (MEST).

References

- 1. Rich, A.; Nordheim, A.; Wang, A. H. Annu. Rev. Biochem. 1984, 53, 791.
- 2. Herbert, A.; Rich, A. J. Biol. Chem. 1996, 271, 11595.
- 3. Herbert, A.; Rich, A. Genetica 1999, 106, 37.
- 4. Herbert, A. G.; Rich, A. Nucleic Acids Res. 1993, 21, 2669.
- Herbert, A.; Alfken, J.; Kim, Y. G.; Mian, I. S.; Nishikura, K.; Rich, A. Proc. Natl. Acad. Sci. USA 1997, 94, 8421.
- Herbert, A.; Schade, M.; Lowenhaupt, K.; Alfken, J.; Schwartz, T.; Shlyakhtenko, L. S.; Lyubchenko, Y. L.; Rich, A. *Nucleic Acids Res.* 1998, 26, 3486.
- 7. Schwartz, T.; Rould, M. A.; Lowenhaupt, K.; Herbert, A.; Rich, A. Science **1999**, *284*, 1841.
- Ha, S. C.; Choi, J.; Hwang, H. Y.; Rich, A.; Kim, Y. G.; Kim, K. K. Nucleic Acids Res. 2009, 37, 629.
- Kang, Y.-M.; Bang, J.; Lee, E.-H.; Ahn, H.-C.; Seo, Y.-J.; Kim, K. K.; Kim, Y.-G.; Choi, B.-S.; Lee, J.-H. J. Am. Chem. Soc. 2009, 131, 11485.
- Seo, Y.-J.; Ahn, H.-C.; Lee, E.-H.; Bang, J.; Kang, Y.-M.; Kim, H.-E.; Lee, Y.-M.; Kim, K.; Choi, B.-S.; Lee, J.-H. *FEBS Lett.* 2010, 584, 4344.