DOI QR코드

DOI QR Code

Size-sorting of Micron-sized Particles using Two Gravitational SPLITT Fractionation (GSF) Connected in a Series (Tandem GSF)

  • Kwon, Min-Hyuk (Separation Sciences Laboratory, Department of Chemistry, Hannam University) ;
  • Moon, Yoon-Jung (Separation Sciences Laboratory, Department of Chemistry, Hannam University) ;
  • Jung, Euo-Chang (Korea Atomic Energy Research Institute) ;
  • Lee, Kyou-Ho (Department of Information and Communications Engineering, Inje University) ;
  • Lee, Seung-Ho (Separation Sciences Laboratory, Department of Chemistry, Hannam University)
  • Received : 2010.10.08
  • Accepted : 2010.12.22
  • Published : 2011.02.20

Abstract

SPLITT Fractionation (SF) provides separation of sample into two subpopulations. Separation into more than two subpopulations requires repeated SF operations. In this study, two Gravitation SF (GSF) channels were connected in a series (Tandem GSF) to obtain a separation into three subpopulations and to improve the fractionation efficiency (FE) of the fraction-b in the full-feed depletion (FFD) mode. In a single channel FFD-GSF operation, the fraction-a contained mostly the beads smaller than the cutoff diameter ($d_c$), while the fraction-b contained beads smaller than $d_c$ as well as those larger than dc, as expected. The measured FE's of the fraction-b are much lower than those of the fraction-a in all cases. The FE's of the fraction-a are higher than 84% with the average of about 91%, while those of the fraction-b are lower than 60% with the average of about 43%. No particular trends were found between FE and $d_c$, indicating the performance of FFD-GSF does not change with $d_c$ in the range where tested. Also no clear trends were observed between the FE and the sample-feeding flow rate, indicating higher sample-feeding rate can be used to increase the sample throughput without losing resolution. When two GSF channels were connected so that the flow stream emerging from the outlet-b of the channel-1 is fed directly into the channel-2, all three FE's measured for the fraction-1a were high with the average value of 99%, indicating it contains almost purely the beads smaller than $d_c$. The FE's measured for the fraction-2a are still good with the average value of 92%. The FE's measured for the fraction-2b are 64% in average, which is about 20% improvement from those obtained in a single channel FFD-GSF at the same conditions.

Keywords

References

  1. Giddings, J. C. Sep. Sci. Technol. 1985, 20, 749. https://doi.org/10.1080/01496398508060702
  2. Springston, S. R.; Myers, M. N.; Calvin Giddings, J. C. Anal. Chem. 1987, 59, 344. https://doi.org/10.1021/ac00129a026
  3. Contado, C.; Dondi, F.; Beckett, R.; Giddings, J. C. Anal. Chimica Acta 1997, 345, 99. https://doi.org/10.1016/S0003-2670(97)00073-1
  4. Dondi, F.; Contado, C.; Blo, G.; Garçia Martin, S. Chromatographia 1998, 48, 643. https://doi.org/10.1007/BF02467594
  5. Contado, C.; Riello, F.; Blo, G.; Dondi, F. J. of Chromatogr. A 1999, 845, 303. https://doi.org/10.1016/S0021-9673(99)00231-9
  6. Giddings, J. C. Sep. Sci. Technol. 1988, 23, 931. https://doi.org/10.1080/01496398808063145
  7. Levin, S.; Myers, M. N.; Giddings, J. C. Sep. Sci. Technol. 1989, 24, 1245. https://doi.org/10.1080/01496398908049900
  8. Levin, S.; Giddings, J. C. J. Chem. Tech. Biotechnol. 1991, 50, 43.
  9. Keil, R. G.; Tsamakis, E.; Fuh, C. B.; Giddings, J. C.; Hedges, J. I. Geochimica et Cosmochimica Acta 1994, 58, 879. https://doi.org/10.1016/0016-7037(94)90512-6
  10. Zhang, J.; William, P. S.; Myers, M. N.; Giddings, J. C. Sep. Sci. Technol. 1994, 29, 2493. https://doi.org/10.1080/01496399408002205
  11. Contado, C.; Reschiglian, P.; Faccini, S.; Zattoni, A.; Dondi, F. J. of Chromatogr. A 2000, 871, 449. https://doi.org/10.1016/S0021-9673(99)01191-7
  12. Contado, C.; Dondi, F. Starch/Staerke 2001, 53, 414. https://doi.org/10.1002/1521-379X(200109)53:9<414::AID-STAR414>3.0.CO;2-N
  13. Lee, S.; Park, H. Y.; Lee, S. K.; Yang, S. G.; Chul Hun, E. Bull. Korean Chem. Soc. 2001, 22, 616.
  14. Moon, M. H.; Kang, D.; Lim, H.; Oh, J. E.; Chang, Y. S. Environ. Sci. Technol. 2002, 36, 4416. https://doi.org/10.1021/es011145o
  15. Blo, G.; Conato, C.; Contado, C.; Fagioli, F.; Dondi, F. Annali di Chimica 2004, 94, c.
  16. Kim, W. S.; Park, M.; Lee, D. W.; Moon, M. H.; Lim, H.; Lee, S. Anal. Bio. Chem. 2004, 378, 746. https://doi.org/10.1007/s00216-003-2345-8
  17. Moon, M. H.; Yang, S. G.; Lee, J. Y.; Lee, S. Anal. Bio. Chem. 2005, 381, 1299. https://doi.org/10.1007/s00216-005-3068-9
  18. Lee, S.; Cho, S. K.; Yoon, J. W.; Choi, S. H.; Chun, J. H.; Eum, C. H.; Kwen, H. J. Liq. Chromatogr. Related Technol. 2010, 33, 27. https://doi.org/10.1080/10826070903427064
  19. Giddings, J. C. Sep. Sci. Technol. 1988, 23, 119. https://doi.org/10.1080/01496398808057638
  20. Contado, C.; Dondi, F. J. Sep. Sci. 2003, 26, 351. https://doi.org/10.1002/jssc.200390044
  21. Contado, C.; Hoyos, M. Chromatographia 2007, 65, 453. https://doi.org/10.1365/s10337-006-0153-y
  22. Blo, G.; Contado, C.; Grandi, D.; Fagioli, F.; Dondi, F. Anal. Chimica Acta 2002, 470, 253. https://doi.org/10.1016/S0003-2670(02)00718-3
  23. Lee, S.; Lee, T. W.; Cho, S. K.; Kim, S. T.; Kang, D. Y.; Kwen, H.; Lee, S. K.; Eum, C. H. Microchemical Journal 2010, 95, 11. https://doi.org/10.1016/j.microc.2009.08.005

Cited by

  1. Sedimentation Field-flow Fractionation in Thin Channels and Rotating Coiled Columns: From Analytical to Preparative Scale Separations vol.50, pp.4, 2011, https://doi.org/10.1080/15422119.2020.1784940