DOI QR코드

DOI QR Code

Experimental and Computational Approaches to the Molecular Structure of 3-(2-Mercaptopyridine)phthalonitrile

  • Tanak, Hasan (Department of Physics, Faculty of Arts and Sciences, Amasya University) ;
  • Koysal, Yavuz (Samsun Vocational School, Ondokuz Mayis University) ;
  • Isik, Samil (Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University) ;
  • Yaman, Hanifi (Gebze Institute of Technology Department of Chemistry) ;
  • Ahsen, Vefa (Gebze Institute of Technology Department of Chemistry)
  • Received : 2010.10.05
  • Accepted : 2010.12.21
  • Published : 2011.02.20

Abstract

The compound 3-(2-Mercaptopyridine)phthalonitrile has been synthesized and characterized by IR, UV-vis, and X-ray single-crystal determination. The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set. The calculated results show that the DFT and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6-31G(d) basis set by applying the Onsager and polarizable continuum model. Using the TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and good agreement with the TD-DFT method and the experimental determination was found. The predicted nonlinear optical properties of the title compound are much greater than those of urea. Besides, molecular electrostatic potential of the title compound were investigated by theoretical calculations. The thermodynamic properties of the compound at different temperatures have been calculated and corresponding relations between the properties and temperature have also been obtained.

Keywords

References

  1. Oae, I. S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press Inc.: Florida, 1992.
  2. Millar, A.; Krebs, B. Sulfur, Its Significance for Chemistry, for Geology Biology, Cosmo Sphere and Technology; Elsevier: Amsterdam, 1989.
  3. Lobana, T. S.; Sharma, R.; Butcher, R. J. Polyhedron 2008, 27, 1375. https://doi.org/10.1016/j.poly.2008.01.008
  4. Lee, F. Y.; Huang, J. J.; Chen, Y. J.; Lin, K. J.; Lee, G. H.; Peng, S. M.; Hwu, J. R.; Lu, K. L. J. Organometallic Chem. 2005, 690, 441. https://doi.org/10.1016/j.jorganchem.2004.09.064
  5. Lobana, T. S.; Kaur, P.; Castineiras, A.; Turner, P.; Failes, T. W. Struct. Chem. 2008, 19, 727. https://doi.org/10.1007/s11224-008-9345-4
  6. Leznoff, C. C., Lever, A. B. P., Eds.; Phthalocyanines: Properties and Applications; VCH: New York, 1989; 1993; 1996; Vols. 1-4.
  7. Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: California, 2003; Vols. 15-20.
  8. Halls, M. D.; Aroca, R.; Terekhov, D. S.; D’Ascanio, A.; Leznoff, C. C. Spectrochim. Acta Part A 1998, 54, 305. https://doi.org/10.1016/S1386-1425(97)00236-9
  9. Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, 1991.
  10. Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195. https://doi.org/10.1021/cr00025a007
  11. Avci D.; Basoglu, A.; Atalay, Y. Struct. Chem. doi:10.1007/s11224-009-9566-1.
  12. Matulkova, I.; Nemec, I.; Teubner, K.; Nemec, P.; Micka, Z. J. Mol. Struct. 2008, 873, 46. https://doi.org/10.1016/j.molstruc.2007.03.007
  13. Boo, B. H.; Lee, J. K.; Lim, E. C. J. Mol. Struct. 2008, 892, 110. https://doi.org/10.1016/j.molstruc.2008.05.004
  14. Proft, F. D.; Geerlings, P. Chem. Rev. 2001, 101, 1451. https://doi.org/10.1021/cr9903205
  15. Tanak, H.; Ersahin, F.; Köysal, Y.; Agar, E.; Isık, S.; Yavuz, M. J. Mol. Mod. 2009, 15, 1281. https://doi.org/10.1007/s00894-009-0492-3
  16. Kurt, M.; Sertbakan, T. R.; Ozduran, M. Spectrochim. Acta Part A 2008, 70, 664. https://doi.org/10.1016/j.saa.2007.08.019
  17. Jian, F. F.; Zhao, P. S.; Bai, Z. S.; Zhang, L. Struct. Chem. 2005, 16, 635. https://doi.org/10.1007/s11224-005-8254-z
  18. Sun, Y.-X.; Hao, Q.-L.; Wei, W.-X.; Yu, Z.-X.; Lu, L.-D.; Wang, X. J. Mol. Struct. THEOCHEM 2009, 904, 74. https://doi.org/10.1016/j.theochem.2009.02.036
  19. Sun, Y.-X.; Hao, Q.-L.; Yu, Z.-X.; Wei, W.-X.; Lu, L.-D.; Wang, X. Mol. Phys. 2009, 107, 223. https://doi.org/10.1080/00268970902769471
  20. Sehlotho, N.; Durmuş, M.; Ahsen, V.; Nyokong, T. Inorg. Chem. Commun. 2008, 1, 1479.
  21. Stoe & Cie, X-AREA Version 1.18 and X-RED32 Version 1.04, Stoe & Cie, Darmstadt, Germany, 2002.
  22. Sheldrick, G. M. SHELXS97 and SHELXL97; University of Gottingen: Germany, 1997.
  23. Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
  24. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837. https://doi.org/10.1107/S0021889899006020
  25. Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659. https://doi.org/10.1107/S0021889895007138
  26. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214. https://doi.org/10.1002/jcc.540030212
  27. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 49. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2004.
  29. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods; Gaussian Inc.: Pittsburgh, 1996.
  30. Dennington, R., II.; Keith, T.; Millam, J. GaussView, Version 4.1.2, Semichem, Inc., Shawnee Mission, KS, 2007.
  31. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997. https://doi.org/10.1103/PhysRevLett.52.997
  32. Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218. https://doi.org/10.1063/1.477483
  33. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454. https://doi.org/10.1016/0009-2614(96)00440-X
  34. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439. https://doi.org/10.1063/1.475855
  35. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
  36. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. https://doi.org/10.1021/jp9716997
  37. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
  38. Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486. https://doi.org/10.1021/ja01299a050
  39. Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134. https://doi.org/10.1007/s00214-002-0363-9
  40. Iskeleli, N. O. Acta Cryst. E 2007, 63, 997.
  41. Isik, S.; Koysal, Y. Acta Cryst. E 2006, 62, 671.
  42. Dinçer, M.; Agar, A.; Akdemir, N.; Agar, E.; Ozdemir, N. Acta Cryst. E 2004, 60, 79.
  43. Zhang, X.-F.; Jia, D.; Songa, A.; Liu, Q. Acta Cryst. E 2008, 64, 356.
  44. Allen, F. H. Acta Cryst. B 1984, 40, 64. https://doi.org/10.1107/S0108768184001750
  45. Teimouri, A.; Emami, M.; Chermahini, A. N.; Dabbagh, H. A. Spectrochim. Acta Part A 2009, 71, 1749. https://doi.org/10.1016/j.saa.2008.06.043
  46. Halls, M. D.; Aroca, R.; Terekhov, D. S.; D’Ascanio, A.; Leznoff, C. C. Spectrochim. Acta Part A 1998, 54, 305. https://doi.org/10.1016/S1386-1425(97)00236-9
  47. Teimouri, A.; Chermahini, A. N.; Taban, K.; Dabbagh, H. A. Spectrochim. Acta Part A 2009, 72, 369. https://doi.org/10.1016/j.saa.2008.10.006
  48. Sundaraganesan, N.; Kalaichelvan, S.; Meganathan, C.; Dominic Joshua, B.; Cornard, J. Spectrochim. Acta Part A 2008, 71, 898. https://doi.org/10.1016/j.saa.2008.02.016
  49. Silverstein, M.; Clayton Basseler, G.; Moril, C. Spectrometric Identification of Organic Compounds; Wiley: New York, 1981.
  50. Shunmugam, R.; Sathyanarayana, D. Spectrochim. Acta Part A 1984, 40, 757. https://doi.org/10.1016/0584-8539(84)80100-2
  51. Krishnakumar, V.; John Xavier, R. Spectrochim. Acta Part A 2006, 63, 454. https://doi.org/10.1016/j.saa.2005.05.031
  52. Tuttolomondo, M. E.; Navarro, A.; Ruiz, T. P.; Varetti, E. L.; Hayes, S. A.; Wann, D. A.; Robertson, H. E.; Rankin, D. W. H.; Altabef, A. B. J. Phys. Chem. A 2007, 111, 9952. https://doi.org/10.1021/jp073611n
  53. Mohamed, G. G. Spectrochim. Acta Part A 2001, 57, 411. https://doi.org/10.1016/S1386-1425(00)00348-6
  54. Xiao-Hong, L.; Zheng-Xin, T.; Xian-Zhou, Z. Spectrochim. Acta Part A 2009, 74, 168. https://doi.org/10.1016/j.saa.2009.05.026
  55. Scrocco, E.; Tomasi, J. Adv. Quantum. Chem. 1979, 11, 115.
  56. Luque, F. J.; Lopez, J. M.; Orozco, M. Theor. Chem. Acc. 2000, 103, 343. https://doi.org/10.1007/s002149900013
  57. Politzer, P.; Laurence, P. R.; Jayasuriya, K.; McKinney, J. Environ. Health Perspect. 1985, 61, 191. https://doi.org/10.2307/3430072
  58. Scrocco, E.; Tomasi, J. Topics in Current Chemistry; Springer: Berlin, 1973; Vol. 7, p 95.
  59. Politzer, P.; Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials; Plenum: New York, 1981.
  60. Sun, Y. X.; Hao, Q. L.; Wei, W. X.; Yu, Z. X.; Lu, L. D.; Wang, X.; Wang, Y. S. J. Mol. Struct.: THEOCHEM 2009, 904, 74. https://doi.org/10.1016/j.theochem.2009.02.036
  61. Andraud, C.; Brotin, T.; Garcia, C.; Pelle, F.; Goldner, P.; Bigot, B.; Collet, A. J. Am. Chem. Soc. 1994, 116, 2094. https://doi.org/10.1021/ja00084a055
  62. Geskin, V. M.; Lambert, C.; Bredas, J. L. J. Am. Chem. Soc. 2003, 125, 15651. https://doi.org/10.1021/ja035862p
  63. Nakano, M.; Fujita, H.; Takahata, M.; Yamaguchi, K. J. Am. Chem. Soc. 2002, 124, 9648. https://doi.org/10.1021/ja0115969
  64. Sajan, D.; Joe, H.; Jayakumar, V. S.; Zaleski, J. J. Mol. Struct. 2006, 785, 43. https://doi.org/10.1016/j.molstruc.2005.09.041
  65. Zhang, R.; Du, B.; Sun, G.; Sun, Y. X. Spectrochim. Acta Part A 2010, 75, 1115. https://doi.org/10.1016/j.saa.2009.12.067
  66. Kleinman, D. A. Phys. Rev. 1962, 126, 1977. https://doi.org/10.1103/PhysRev.126.1977
  67. Thanthiriwatte, K. S.; Nalin de Silva, K. M. J. Mol. Struct.: THEOCHEM 2002, 617, 169. https://doi.org/10.1016/S0166-1280(02)00419-0
  68. Sun, Y. X.; Hao, Q. L.; Yu, Z. X.; Wei, W. X.; Lu, L. D.; Wang, X. Mol. Phys. 2009, 107, 223. https://doi.org/10.1080/00268970902769471
  69. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.; Mlayah, A. J. Mol. Struct. 2009, 920, 1. https://doi.org/10.1016/j.molstruc.2008.09.029
  70. Abraham, J. P.; Sajan, D.; Shettigar, V.; Dharmaprakash, S. M.; Nemec, I.; Joe, I. H.; Jayakumar, V. S. J. Mol. Struct. 2009, 917, 27. https://doi.org/10.1016/j.molstruc.2008.06.031
  71. Sagdinc, S. G.; Esme, A. Spectrochim. Acta Part A 2010, 75, 1370. https://doi.org/10.1016/j.saa.2010.01.004
  72. Ahmed, A. B.; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C. Spectrochim. Acta Part A 2010, 75, 293. https://doi.org/10.1016/j.saa.2009.10.026

Cited by

  1. Effect of alkyl chain on the NLO property of nonylphenol isomers: a DFT study vol.146, pp.12, 2015, https://doi.org/10.1007/s00706-015-1497-5
  2. Aldehyde Substituted Phthalocyanines: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties vol.26, pp.4, 2016, https://doi.org/10.1007/s10895-016-1852-x
  3. ) complexes: structural, spectral, DFT, and DNA studies vol.41, pp.11, 2017, https://doi.org/10.1039/C7NJ00840F
  4. -(pyridin-2-yl)butanamide Complexes: Synthesis, Characterization, DFT, Biological, and Ion-flotation studies vol.54, pp.6, 2017, https://doi.org/10.1002/jhet.2990
  5. Structural, optical, thermal and NLO behavior of zinc hydrogen maleate dihydrate single crystal vol.35, pp.4, 2017, https://doi.org/10.1515/msp-2017-0095
  6. Solvent-free mechanochemical synthesis of Zn(II), Cd(II), and Cu(II) complexes with 1-(4-methoxyphenyl)-4-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)-1H-pyrrole-3-carbonitrile vol.7, pp.6, 2018, https://doi.org/10.1515/gps-2017-0057
  7. Ball milling: a green mechanochemical approach for synthesis of Ni (II), Co (II) and Cu (II) complexes pp.1099-0739, 2019, https://doi.org/10.1002/aoc.4786
  8. Quantum chemical calculations, vibrational studies, HOMO-LUMO and NBO/NLMO analysis of 2-bromo-5-nitrothiazole vol.104, pp.None, 2011, https://doi.org/10.1016/j.saa.2012.11.066
  9. Molecular structure, spectroscopic and quantum chemical studies on 2'-chloro-4-dimethlamino azobenzene vol.1068, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2014.04.014
  10. Structural, spectral and DFT studies of N-ethyl-2-(4-(phenylamino)-4-thioxobutan-2-ylidene)hydrazinecarbothioamide complexes synthesized by ball milling vol.1079, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2014.09.033
  11. Molecular structure, spectroscopic and DFT computational studies on 4,5-bis(tert-butylsulfanyl)phthalonitrile vol.1090, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2014.11.025
  12. Computational simulation and biological studies on 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide complexes vol.1101, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2015.08.008
  13. Computational studies on structure and spectroscopic properties of 4-(Boc-amino) pyridine vol.1102, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2015.08.069
  14. A combined experimental (XRD, FT-IR, and UV-Vis) and DFT computational studies on (E)-N-[4-bromo-2-(trifluromethoxy)phenyl]-1-(5-nitrothiophen-2-yl) methanimine vol.114, pp.2, 2011, https://doi.org/10.1080/00268976.2015.1090636
  15. Synthesis, click reaction, molecular structure, spectroscopic and DFT computational studies on 3-(2,6-bis(trifluoromethyl)phenoxy)-6-(prop-2-yn-1-yloxy)phthalonitrile vol.1113, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.01.078
  16. Bivalent transition metal complexes of 3-(2-(4-(dimethylamino)benzylidene)hydrazinyl)-3-oxo-N-(thiazol-2-yl)propanamide: Structural, spectral, DFT, ion-flotation and biological studies vol.3, pp.3, 2016, https://doi.org/10.1016/j.ejbas.2016.06.004
  17. A spectroscopic study on new phthalonitrile derivative and its computational background: 4-[(4,5-Diphenyl-4H-1,2,4-triazol-3-yl)sulfanyl]benzene-phthalonitrile vol.1127, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2016.08.016
  18. Synthesis, characterization and investigation of the spectroscopic properties of novel peripherally 2,3,5-trimethylphenoxy substituted Cu and Co phthalocyanines, the computational and experimental stu vol.3, pp.3, 2011, https://doi.org/10.18596/jotcsa.287303
  19. Synthesis, spectroscopic characterization, biological activity and theoretical studies of (E)-N3-(2-chlorobenzylidene)-H-1,2,4-triazole-3,5-diamine vol.1144, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.05.030
  20. Experimental and theoretical characterization of organic salt: 2-((4-bromophenyl)amino) pyrido[1,2-a] quinoxalin-11-ium bromide monohydrate synthesized via oxidative cyclization vol.1156, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2017.12.014
  21. Synthesis, biological evaluation, molecular docking and DFT calculations of novel benzenesulfonamide derivatives vol.1176, pp.None, 2019, https://doi.org/10.1016/j.molstruc.2018.08.087
  22. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives vol.1179, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2018.11.008
  23. Theoretical Investigation on Growth Kinetics and Thermodynamic Properties of Pyridine-2-Carboxylic Acid Crystals vol.23, pp.1, 2019, https://doi.org/10.2478/mme-2019-0004
  24. The Oxidation of 4-(4-Formylphenoxy) Phthalonitrile to 4-(4-Carboxylphenoxy) Phthalonitrile at Ambient Conditions vol.40, pp.3, 2011, https://doi.org/10.17776/csj.435439
  25. Microwave-assisted synthesis of novel 5-aminouracil-based compound with DFT calculations vol.1194, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2019.04.078
  26. Synthesis, characterization, computational simulation, biological and anticancer evaluation of Pd(II), Pt(II), Zn(II), Cd(II), and Hg(II) complexes with 2‐amino‐4‐phenyl‐5 vol.67, pp.6, 2020, https://doi.org/10.1002/jccs.201900454
  27. Divalent manganese, cobalt, copper and cadmium complexes of (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid: Preparation, character vol.35, pp.1, 2011, https://doi.org/10.1002/aoc.6037
  28. Synthesis, structural, spectroscopical and DFT studies on third order NLO crystal: Ethyl-5‑hydroxy‑4-(2-hydroxyphenyl)-2-oxo-6-(trifluoromethyl) hexahydropyrimidine5-carboxylate (EHOTHPC) vol.1224, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2020.129017