DOI QR코드

DOI QR Code

Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene

  • Paul, Dababrata (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Kim, Hyun-Kook (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Hong, Ki-Ryong (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Kim, Tae-Kyu (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2010.12.15
  • Accepted : 2011.01.14
  • Published : 2011.02.20

Abstract

The photodissociation dynamics of bromobenzene near 234 nm has been investigated using a two-dimensional photofragment ion-imaging technique coupled with a state-selective [2+1] resonance-enhanced multiphoton ionization (REMPI) scheme. The nascent Br atoms are produced by the primary C-Br bond dissociation, which leads to the formation of $C_6H_5$ ($\tilde{X}$) and Br($^2P_j$, j = 1/2, 3/2). The observed translational energy distributions have been fitted by a single Boltzmann function and two Gaussian functions. Trimodal translational energy distributions of Br($^2P_j$) have been assigned to the direct/indirect dissociation mechanisms originating from the initially excited $^3({\pi},{\pi}^*)$ state. The assignments have been confirmed by the recoil anisotropy and distribution width corresponding to the individual components.

Keywords

References

  1. Sparks, R. K.; Shobadake, K.; Carlson, L. R.; Lee, Y. T. J. Chem. Phys. 1981, 75, 3838. https://doi.org/10.1063/1.442538
  2. Kim, T. K.; Lee, K. W.; Lee, K. S.; Lee, E. K.; Jung, K. H. Chem. Phys. Lett. 2007, 446, 31. https://doi.org/10.1016/j.cplett.2007.08.044
  3. Kim, T. K.; Park, M. S.; Lee, K. W.; Jung, K. H. J. Chem. Phys. 2001, 115, 10745. https://doi.org/10.1063/1.1419063
  4. Lee, K. S.; Lee, K. W.; Lee, S. K.; Jung, K. H.; Kim, T. K. J. Mol. Spectra. 2008, 249, 43. https://doi.org/10.1016/j.jms.2008.01.010
  5. Eppink, A. T. J. B.; Parker, D. H. J. Chem. Phys. 1999, 110, 832. https://doi.org/10.1063/1.478051
  6. Lee, K. W.; Jee, Y. J.; Jung, K. H. J. Chem. Phys. 2002, 115, 4490.
  7. Lee, K. S.; Paul, D.; Hong, K.; Cho, H. N.; Jung, K. W.; Kim, T. K. Bull. Korean Chem. Soc. 2009, 30, 2962. https://doi.org/10.5012/bkcs.2009.30.12.2962
  8. Zou, P; McGiven, W. S.; North, S. W. Phys. Chem. Chem. Phys. 2000, 2, 3785. https://doi.org/10.1039/b004349o
  9. Amatatsu, Y.; Yabushita, S.; Morokuma, K. J. Chem. Phys. 1996, 104, 9783. https://doi.org/10.1063/1.471758
  10. Hua, L.; Shen, H.; Zhang, C.; Cao, Z.; Zhang, B. Chem. Phys. Lett. 2008, 460, 50.
  11. Zhang, H.; Zhu, R. S.; Wang, G. J.; Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys. 1999, 110, 2922. https://doi.org/10.1063/1.477935
  12. Tang, B.; Zhu, R.; Tang, Y.; Ji, L.; Zhang, B. Chem. Phys. Lett. 2003, 381, 617. https://doi.org/10.1016/j.cplett.2003.10.049
  13. Liu, Y. J.; Persson, P.; Lunell, S. J. Phys. Chem. A 2004, 108, 2339. https://doi.org/10.1021/jp0379648
  14. Liu, Y. J.; Persson, P.; Karlsson, H. O.; Lunell, S.; Kadi, M.; Karlsson, D.; Davidsson, J. J. Chem. Phys. 2004, 120, 6502. https://doi.org/10.1063/1.1667460
  15. Kavita, K.; Das, P. K. J. Chem. Phys. 2002, 117, 2038. https://doi.org/10.1063/1.1489416
  16. Kadi, M.; Davidsson, J.; Tarnovsky, A. N.; Rasmusson, M.; Akesson, E. Chem. Phys. Lett. 2001, 350, 93. https://doi.org/10.1016/S0009-2614(01)01283-0
  17. Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. Chem. Phys. 1994, 189, 117. https://doi.org/10.1016/0301-0104(94)80011-1
  18. Hwang, H. J.; El-sayed, M. A. J. Chem. Phys. 1992, 96, 856. https://doi.org/10.1063/1.462418
  19. Freedman, A.; Yang, S. C.; Kawasaki, M.; Bersohn, R. J. Chem. Phys. 1980, 72, 1028. https://doi.org/10.1063/1.439269
  20. Cheng, P. Y.; Zhong, D.; Zewail, A. H. Chem. Phys. Lett. 1995, 237, 399. https://doi.org/10.1016/0009-2614(95)00364-A
  21. Zhong, D.; Zewail, A. H. J. Phys. Chem. A 1998, 102, 4031. https://doi.org/10.1021/jp9805196
  22. Kawasaki, M.; Lee, S. J.; Bersohn, R. J. Chem. Phys. 1980, 72, 1028. https://doi.org/10.1063/1.439269
  23. Ichimura, T.; Mori, Y.; Shinohara, H.; Nishi, N. J. Chem. Phys. 1997, 107, 835. https://doi.org/10.1063/1.474383
  24. Dzvonik, M.; Yang, S.; Bersohn, R. J. Chem. Phys. 1974, 61, 4408. https://doi.org/10.1063/1.1681758
  25. Kadi, M.; Ivarsson, E.; Davidsson, J. Chem. Phys. Lett. 2004, 384, 35. https://doi.org/10.1016/j.cplett.2003.12.006
  26. Kadi, M.; Davidsson, J. Chem. Phys. Lett. 2003, 378, 172. https://doi.org/10.1016/S0009-2614(03)01271-5
  27. Gu, X. B.; Wang, G. J.; Huang, J. H.; Han, K. L.; He, G. Z.; Lou, N. Q. J. Phys. Chem. A 2001, 105, c. https://doi.org/10.1021/jp0008795
  28. Kang, W. K.; Kim, Y. S.; Jung, K. H. Chem. Phys. Lett. 1995, 244, 183. https://doi.org/10.1016/0009-2614(95)00880-D
  29. Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477. https://doi.org/10.1063/1.1148310
  30. Park, M. S.; Jung, Y. J.; Lee, S. H.; Kim, D. C.; Jung, K. H. Chem. Phys. Lett. 2000, 322, 429. https://doi.org/10.1016/S0009-2614(00)00467-X
  31. Hansen, E. W.; Law, P. L. J. Opt. Soc. Am. A 1985, 2, 510. https://doi.org/10.1364/JOSAA.2.000510
  32. Zare, R. N.; Herschbach, D. R. Proc. IEEE 1963, 51, 173. https://doi.org/10.1109/PROC.1963.1676
  33. Park, M. S.; Lee, K. W.; Jung, K. H. J. Chem. Phys. 2001, 114, 10368. https://doi.org/10.1063/1.1374581
  34. Ajitha, D.; Fedorov, D. G.; Finley, J. P.; Hirao, K. J. Chem. Phys. 2002, 117, 7068. https://doi.org/10.1063/1.1499724
  35. Frietas, J. E.; Hwang, H. J.; El-sayed, M. A. J. Phys. Chem. 1995, 99, 7395. https://doi.org/10.1021/j100019a024
  36. Lee, K. S.; Lee, K. W.; Kim, T. K.; Ryoo, R.; Jung, K. H. J. Chem. Phys. 2005, 122, 034308. https://doi.org/10.1063/1.1825994

Cited by

  1. Br at 234 nm vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.143
  2. Formation Pathways vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.957
  3. configuration interaction and DFT computations vol.143, pp.16, 2015, https://doi.org/10.1063/1.4933419
  4. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: Competition between C-Y (Y = halogen) and O-H bond fission vol.138, pp.16, 2011, https://doi.org/10.1063/1.4802058