References
- Thomson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555. https://doi.org/10.1021/cr9402081
- Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3169.
- Dandia, A.; Singh, R.; Sarawgi, P.; Khaturia, S. Chin. J. Chem. 2006, 24, 950. https://doi.org/10.1002/cjoc.200690180
- Arend, M.; Westermann, B.; Risch, N. Angew. Chem. Int. Ed. 1998, 37, 1044. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E
- Mogilaiah, k.; Kankaiah, G. Indian J. Heterocycl. Chem. 2002, 11, 283.
- Kidwai, M.; Bhatnagar, D.; Mishra, N. K.; Bansal, V. Catal. Commun. 2008, 9, 2547. https://doi.org/10.1016/j.catcom.2008.07.010
- Akiyama, T.; Matsuda, K.; Fuchibe, K. Synlett 2005, 2, 322.
- Akiyama, T.; Takaya, J.; Kagoshima, H. Synlett 1999, 7, 1045.
- Akiyama, T.; Itoh, J.; Fuchibe, K. Synlett 2002, 8, 1269.
- Wang, L.; Han, J.; Sheng, J.; Tian, H.; Fan, Z. Catal. Commun. 2005, 6, 201. https://doi.org/10.1016/j.catcom.2004.12.009
- Li, Z.; Ma, X.; Liu, J.; Feng, X.; Tian, G.; Zhu, A. J. Mol. Catal. A: Chem. 2007, 272, 132. https://doi.org/10.1016/j.molcata.2007.03.029
- Li, H.; Zeng, H.; Shao, H. Tetrahedron Lett. 2009, 50, 6858. https://doi.org/10.1016/j.tetlet.2009.09.131
- Zeng, H.; Li, H.; Shao, H. Ultrason. Sonochem. 2009, 16, 758. https://doi.org/10.1016/j.ultsonch.2009.03.008
- Ollevier, T.; Nadeau, E. Synlett 2006, 2, 219.
- Okuhara, T. Chem. Rev. 2002, 102, 3641. https://doi.org/10.1021/cr0103569
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. Angew. Chem., Int. Ed. 2004, 43, 2955. https://doi.org/10.1002/anie.200453947
- Zhou, L.; Liu, K.; Hua, W. M.; Yue, Y. H.; Gao, Z. Chin. J. Chem. 2009, 30, 196.
- Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
- Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
- Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
- Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
- Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
- Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
Cited by
- ): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2385
- ] as a Recyclable Catalyst vol.41, pp.9, 2011, https://doi.org/10.1080/15533174.2011.591358
- ChemInform Abstract: Carbon-Based Solid Acid Catalyzed One-Pot Mannich Reaction: A Facile Synthesis of β-Amino Carbonyl Compounds. vol.42, pp.28, 2011, https://doi.org/10.1002/chin.201128077
- ] as a Reusable Heterogeneous Catalyst vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1508
- A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1356-0
- Atom-economy click synthesis of tetrahydrobenzo[b]pyrans using carbon-based solid acid as a novel, highly efficient and reusable heterogeneous catalyst vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1536-6
- ]pyrans in Water vol.48, pp.4, 2016, https://doi.org/10.1080/00304948.2016.1194127
- Catalytic performance of a Keplerate-type, giant-ball nanoporous isopolyoxomolybdate as a highly efficient recyclable catalyst for the synthesis of biscoumarins vol.71, pp.3, 2016, https://doi.org/10.1515/znb-2015-0151
- Design and development of a novel magnetic camphor nanospheres core/shell nanostructure vol.7, pp.2, 2017, https://doi.org/10.1007/s40097-017-0224-7
- Synthesis of Pyrazolo[3,4-d]pyrimidin-4-ones Catalyzed by Br?nsted-acidic Ionic Liquids as Highly Efficient and Reusable Catalysts vol.29, pp.11, 2011, https://doi.org/10.1002/cjoc.201180411
- Acetophenone Mannich bases: study of ionic liquid catalysed synthesis and antioxidative potential of products vol.5, pp.11, 2018, https://doi.org/10.1098/rsos.181232
- A Simple and Fast Method for Protection of Aldehydes as 1,1-Diacetates Using Cerium(IV) Sulfate as an Efficient and Reusable Inorganic Catalyst vol.41, pp.9, 2011, https://doi.org/10.1080/15533174.2011.591346
- A Highly Efficient and Fast Method for the Synthesis of Biscoumarins Using Tetrabutylammonium Hexatungstate [TBA]2[W6O19] as Green and Reusable Heterogeneous Catalyst vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4286
- Preparation, Characterization and First Application of Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as a Reusable Catalyst for the Synthesis of 14-Aryl-14H-dibenzo[a, j]xant vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2311
- An unexpected tetracyclic product isolated during the synthesis of biscoumarins catalyzed by [MIM(CH2)4SO3H][HSO4]: Characterization and X-ray crystal vol.163, pp.3, 2011, https://doi.org/10.1016/j.molliq.2011.08.007
- A New Phosphotungstic Acid Salt, [Et3NH]3PW12O40: Synthesis, Characterization and Its Application as Catalyst in the Synthesis of 4(3H)-Quinazolinones vol.42, pp.1, 2011, https://doi.org/10.1080/15533174.2011.609232
- An Efficient Method for Knoevenagel Condensation Catalyzed by Tetrabutylammonium hexatungstate [TBA]2[W6O19] as Novel and Reusable Heterogeneous Catalyst vol.42, pp.7, 2012, https://doi.org/10.1080/15533174.2012.680140
- Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
- Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
- Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2724
- The synthesis of aminonaphtols and b-amino carbonyls in the presence of a magnetic recyclable Fe3O4@MCM-48-NaHSO4 nano catalyst vol.4, pp.32, 2011, https://doi.org/10.1039/c3ra47768a
- Performance Evaluation of Newly Prepared Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines vol.44, pp.1, 2011, https://doi.org/10.1080/15533174.2013.768645
- One-pot synthesis of β-amino carbonyl compounds catalyzed silica supported phenylphosphinic acid vol.4, pp.1, 2011, https://doi.org/10.1515/gps-2014-0077
- One-pot synthesis of β-amino carbonyl compounds catalyzed silica supported phenylphosphinic acid vol.4, pp.1, 2011, https://doi.org/10.1515/gps-2014-0077
- P2O5 supported on SiO2 as an efficient and reusable catalyst for rapid one-pot synthesis of carbamatoalkyl naphthols under solvent-free conditions vol.3, pp.1, 2017, https://doi.org/10.1080/23312009.2017.1317582
- Sulfonated polynaphthalene as an effective and reusable catalyst for the one-pot preparation of amidoalkyl naphthols: DFT and spectroscopic studies vol.1144, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2017.05.010
- K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
- K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
- K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
- Cellulose-Supported Ionic Liquid Phase Catalyst-Mediated Mannich Reaction vol.72, pp.7, 2011, https://doi.org/10.1071/ch18576
- K2CO3/Al2O3: An Efficient and Recyclable Catalyst for One-Pot, Three Components Synthesis of α-Aminophosphonates and Bioactivity Evaluation vol.31, pp.10, 2019, https://doi.org/10.14233/ajchem.2019.22194
- Introduction of a Novel Brønsted Acidic Ionic Liquid Incorporated in UiO‐66 Nanocages for the Efficient Synthesis of Pyrimido[4,5‐d]Pyrimidines vol.4, pp.44, 2019, https://doi.org/10.1002/slct.201903642
- Efficient synthesis of β‐aminoketones catalyzed by Fe3O4@ quillaja sapogenin/Ni (II) as a novel magnetic nano‐catalyst vol.34, pp.10, 2011, https://doi.org/10.1002/aoc.5834