DOI QR코드

DOI QR Code

Fast, Efficient and Regioselective Conversion of Epoxides to β-Hydroxy Thiocyanates with NH4SCN/Zeolite Molecular Sieve 4 Å under Solvent-Free Conditions

  • Received : 2010.11.23
  • Accepted : 2010.12.10
  • Published : 2011.02.20

Abstract

Solvent-free conversion of various epoxides to their corresponding $\beta$-hydroxy thiocyanates was carried out successfully with $NH_4SCN$/zeolite molecular sieve $4{\AA}$ system at room temperature. The reactions were completed within 2 - 7 min to give thiocyanohydrins with perfect regioselectivity and isolated yields. Moreover, the zeolite can be reused for several times without losing its activity.

Keywords

References

  1. Smith, J. G. Synthesis 1984, 629.
  2. Shimizu, M.; Yoshida, A.; Fujisawa, T. Synlett 1992, 204.
  3. Bonini, C.; Righi, G. Synthesis 1994, 225.
  4. Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737. https://doi.org/10.1021/cr50028a006
  5. Rao, A. S.; Paknikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323. https://doi.org/10.1016/S0040-4020(01)91961-1
  6. Chini, M.; Crotti, P.; Favero, L.; Macchia, F. Tetrahedron Lett. 1991, 32, 4775.
  7. Ciaccio, J. A.; Stanescu, C.; Bontemps, J. Tetrahedron Lett. 1992, 33, 1431. https://doi.org/10.1016/S0040-4039(00)91639-3
  8. Iranpoor, N.; Salehi, P. Tetrahedron 1995, 51, 909. https://doi.org/10.1016/0040-4020(94)00979-5
  9. Iranpoor, N.; Kazemi, F.; Salehi, P. Synth. Commun. 1997, 27, 1247. https://doi.org/10.1080/00397919708003362
  10. Hirose, T.; Sunazuka, T.; Zhi-ming, T.; Handa, M.; Vchida, R.; Shiomi, K.; Harigaya, Y.; Omura, S. Heterocycles 2000, 53, 777. https://doi.org/10.3987/COM-99-8744
  11. Iranpoor, N.; Zeynizadeh, B. Synth. Commun. 1998, 28, 3913. https://doi.org/10.1080/00397919808004948
  12. Mohammadpoor-Baltork, I.; Aliyan, H.; Synth. Commun. 1998, 28, 3943. https://doi.org/10.1080/00397919808004952
  13. Mohammadpoor-Baltork, I.; Khosropour, A. R. Molecules 2001, 6, 996. https://doi.org/10.3390/61200996
  14. Mirkhani, V.; Tangestaninejad, S.; Alipanah, L. Synth. Commun. 2002, 32, 621. https://doi.org/10.1081/SCC-120002409
  15. Salehi, P.; Khodaei, M. M.; Zolfigol, M. A.; Keyvan, A. Synth. Commun. 2003, 33, 3041.
  16. Kazemi, F.; Kiasat, A. R. Phosphorus, Sulfur and Silicon 2003, 178, 1333. https://doi.org/10.1080/10426500307898
  17. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R. Tetrahedron 2004, 60, 6105. https://doi.org/10.1016/j.tet.2004.05.069
  18. Bandgar, B. P.; Joshi, N. S.; Kamble, V. T. Tetrahedron Lett. 2006, 47, 4775. https://doi.org/10.1016/j.tetlet.2006.03.171
  19. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Taghavi, S. A. Catal. Commun. 2007, 8, 2087. https://doi.org/10.1016/j.catcom.2007.04.013
  20. Wu, L.; Wang, Y.; Yan, F.; Yang, C. Bull. Korean Chem. Soc. 2010, 31, 1419. https://doi.org/10.5012/bkcs.2010.31.5.1419
  21. Wagner-Jaurgg, G. Justus Liebigs Ann. Chem. 1948, 561, 87.
  22. Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538. https://doi.org/10.1021/ja00230a045
  23. Iranpoor, N.; Kohmareh, G. A. Phosphrous, Sulfur and Silicon 1999, 152, 135. https://doi.org/10.1080/10426509908031625
  24. Najera, C.; Sansano, J. M. Tetrahedron 1991, 47, 5193.
  25. Tamura, Y.; Kawasaki, T.; Kita, Y. J. Chem. Soc. Perkin Trans. 1 1981, 1577.
  26. Olszewski-Ortar, A.; Gros, P.; Fort, Y. Tetrahedron Lett. 1997, 38, 8699. https://doi.org/10.1016/S0040-4039(97)10338-0
  27. Choudary, B. M.; Shobha, S.; Kantam, M. L. Synth. Commun. 1990, 20, 2313. https://doi.org/10.1080/00397919008053174
  28. Tanabe, Y.; Mori, K.; Yoshida, Y. J. Chem. Soc. Perkin Trans. 1 1997, 671.
  29. Tamami, B.; Mahdavi, H. Tetrahedron Lett. 2002, 43, 6225. https://doi.org/10.1016/S0040-4039(02)01332-1
  30. Chen, X.; Wu, H.; Xu, R.; Liu, M.; Ding, J.; Su, W. Synth. Commun. 2008, 38, 1855.
  31. Yadav, J. S.; Reddy, B. V. S.; Srinivas Reddy, C. Tetrahedron Lett. 2004, 45, 1291. https://doi.org/10.1016/j.tetlet.2003.11.102
  32. Sharghi, H.; Hasani Nejad, A.; Nasseri, M. A. New. J. Chem. 2004, 28, 946. https://doi.org/10.1039/b316880h
  33. Sharghi, H.; Hasani Nejad, A. Phosphorus, Sulfur and Silicon 2004, 179, 2297. https://doi.org/10.1080/10426500490484995
  34. Sharghi, H.; Nasseri, M. A.; Hasani Nejad, A. J. Mol. Catal. A: Chem. 2003, 206, 53. https://doi.org/10.1016/S1381-1169(03)00450-3
  35. Kiasat, A. R.; Fallah Mehrjardi, M. Synth. Commun. 2008, 38, 2995. https://doi.org/10.1080/00397910802044231
  36. Kiasat, A. R.; Fallah Mehrjardi, M. Catal. Commun. 2008, 9, 1497. https://doi.org/10.1016/j.catcom.2007.12.019
  37. Sharghi, H.; Salimi Beni, A.; Khalifeh, R. Helv. Chim. Acta 2007, 90, 1373. https://doi.org/10.1002/hlca.200790139
  38. Kiasat, A. R.; Zayadi, M.; Fallah Mehrjardi, M. Chinese Chem. Lett. 2008, 19, 665. https://doi.org/10.1016/j.cclet.2008.04.004
  39. Kiasat, A. R.; Fallah Mehrjardi, M. J. Chin. Chem. Soc. 2008, 55, 1119.
  40. Niknam, K. Phosphorus, Sulfur and Silicon 2004, 179, 499. https://doi.org/10.1080/10426500490262685
  41. Sharghi, H.; Nasseri, M. A.; Niknam, K. J. Org. Chem. 2001, 66, 7287. https://doi.org/10.1021/jo0103266
  42. Sharghi, H.; Nasseri, M. A. Phosphorus, Sulfur and Silicon 2003, 178, 1353. https://doi.org/10.1080/10426500307906
  43. Kiasat, A. R.; Fallah Mehrjardi, M. J. Braz. Chem. Soc. 2008, 19, 1595. https://doi.org/10.1590/S0103-50532008000800020
  44. Kiasat, A. R.; Mouradzadegun, A.; Elahi, S.; Fallah Mehrjardi, M. Chinese Chem. Lett. 2010, 21, 146. https://doi.org/10.1016/j.cclet.2009.10.030
  45. Aghapour, G.; Hatefipour, R. Synth. Commun. 2009, 39, 1698. https://doi.org/10.1080/00397910802578626
  46. Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis: Synthesis, Reactions and Applications; Wiley-VCH: Weinheim, 2010.
  47. Cejka, J.; van Bekkum, H.; Corma, A.; Schueth, F. Introduction to Zeolite Molecular Sieves, 3rd ed.; Elsevier: Amsterdam, 2007.
  48. Flank, W. H.; Whyte, T. E.; Kerr, G. T. Perspectives in Molecular Sieve Science; ACS Symposium Series: 1988; Vol. 368.
  49. Nikolina, V. Y.; Neimark, I. E.; Piontkovskaya, M. A. Russ. Chem. Rev. 1960, 29, 509. https://doi.org/10.1070/RC1960v029n09ABEH001250
  50. Tanaka, K. Solvent-free Organic Synthesis; Wiley-VCH: Weinheim, 2003.

Cited by

  1. ChemInform Abstract: Fast, Efficient and Regioselective Conversion of Epoxides to β-Hydroxy Thiocyanates with NH4SCN/Zeolite Molecular Sieve 4 Å under Solvent-Free Conditions. vol.42, pp.24, 2011, https://doi.org/10.1002/chin.201124085
  2. Remarkably Fast and Mild Solvent-Free Conversion of Epoxides into Thiocyanohydrins Using Mukaiyama Reagent vol.187, pp.11, 2012, https://doi.org/10.1080/10426507.2012.685670
  3. -Hydroxy Thiocyanates in Water vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/561649
  4. SCN under solvent-free conditions pp.1563-5325, 2017, https://doi.org/10.1080/10426507.2017.1390460
  5. 1,1'-Bis-Methyl-3, 3-Methylenebisimidazolium Dichloride as an Efficient Phase Transfer Catalyst for Ring Opening of Epoxides Using SCN- and N3- in water vol.36, pp.7, 2011, https://doi.org/10.3184/174751912x13371750612188
  6. Ring Opening of Epoxides by Using Cross-Linked Poly(4-Vinylpyridine)-Supported Thiocyanate in the Presence of Polymer-Supported Sulfuric Acid Under Solvent-Free Conditions vol.190, pp.4, 2015, https://doi.org/10.1080/10426507.2014.887079
  7. A highly efficient protocol for regioselective ring-opening of epoxides with alcohols, water, acetic acid, and acetic anhydride catalyzed by SbF3 vol.191, pp.7, 2011, https://doi.org/10.1080/10426507.2015.1135439
  8. The Application of 4Å Molecular Sieves in Organic Chemical Syntheses: An Overview vol.53, pp.2, 2011, https://doi.org/10.1055/s-0040-1706535