DOI QR코드

DOI QR Code

Determination of the Intracellular Concentrations of Metabolites in Escherichia coli Collected during the Exponential and Stationary Growth Phases using Liquid Chromatography-Mass Spectrometry

  • Park, Chang-Hun (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Chang-Hun (Department of Chemistry, Sogang University) ;
  • Lee, Youn-Jin (Department of Chemistry, Sogang University) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, Han-Bin (Department of Chemistry, Sogang University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2010.09.30
  • Accepted : 2010.12.03
  • Published : 2011.02.20

Abstract

In the present study, we demonstrate that SRM LC-MS/MS method developed by Luo et al. (ref. 10) can be successfully applied to the quantitative analysis of intracellular metabolites in E. coli that are collected at the exponential and stationary growth phases. A focus is given on measuring the changes in the concentrations of intracellular metabolites in batch cultures, which were induced during both the dynamically changing exponential and stationary growth phases. The following intracellular metabolites are quantified in the exponential and stationary phases of E. coli growth, using the SRM mode of a triple quadrupole mass spectrometer: glucose-1-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, acetyl-coenzyme A, 6-phosphogluconate, ribulose-5-phosphate, xylulose-5-phosphate, erythrose-4-phosphate. The determined intracellular metabolite concentration profiles are shown to be in a good agreement with the growth profiles of E. coli, which clearly indicates that SRM LC-MS/MS can be successfully used for following the metabolite changes induced at different growth stages.

Keywords

References

  1. Fiehn, O. Comparative and Functional Genomics 2001, 2, 155. https://doi.org/10.1002/cfg.82
  2. Fiehn, O.; Kopka, J.; Dormann, P.; Altmann T.; Trethewey, R. N.; Willmitzer, L. Nature Biotechnol. 2000, 18, 1157.
  3. Gipson, G. T.; Tatsuoka, K. S.; Sokhansanj, B. A.; Ball, R. J.; Connor, S. C. Metabolomics 2008, 4, 94. https://doi.org/10.1007/s11306-007-0096-9
  4. Hollywood, K.; Brison, D. R.; Goodacre, R. Proteomics 2006, 6, 4716. https://doi.org/10.1002/pmic.200600106
  5. Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry Reviews 2007, 26, 51. https://doi.org/10.1002/mas.20108
  6. Shulaev, V. Briefings in Bioinformatics 2006, 7, 128. https://doi.org/10.1093/bib/bbl012
  7. Buchholz, A.; Hurlebaus, J.; Wandrey, C.; Takors, R. Biomolecular Engineering 2002, 19, 5. https://doi.org/10.1016/S1389-0344(02)00003-5
  8. Dunn, W. B.; Ellis, D. I. Trends in Analytical Chemistry 2005, 24, 285. https://doi.org/10.1016/j.trac.2004.11.021
  9. Moco, S.; Bino, R. J.; De Vos, R. C. H.; Vervoort, J. Trends in Analytical Chemistry 2007, 26, 855. https://doi.org/10.1016/j.trac.2007.08.003
  10. Luo, B.; Groenke, K.; Takors, R.; Wandrey, C.; Oldiges, M. Journal of Chromatography A 2007, 1147, 153. https://doi.org/10.1016/j.chroma.2007.02.034
  11. Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Van der werf, M. J.; Hankemeier, T. Analytical Chemistry 2006, 78, 6573. https://doi.org/10.1021/ac0607616
  12. Huck, J. H. J.; Struys, E. A.; Verhoeven, N. M.; Jakobs C.; Van der knap, M. S. Clinical Chemistry 2003, 49, 1375. https://doi.org/10.1373/49.8.1375
  13. Sekiguchi, Y.; Mitsuhashi, N.; Kokaji, T.; Miyakoda, Hi.; Mimura, T. Journal of Chromatography A 2005, 1085, 131. https://doi.org/10.1016/j.chroma.2005.01.098
  14. Van dam, J. C.; Eman, M. R.; Frank, J.; Lange, H. C.; Van dedem, G. W. K.; Heijnen S. J. Anal. Chim. Acta 2002, 460, 209.
  15. Chassgnolie, C.; Noisommit-Rizzi, N.; Schmid, J. W.; Mauch, K.; Reuss, M. Biotechnol. Bioeng. 2002, 79, 53. https://doi.org/10.1002/bit.10288
  16. Winder, C. L.; Dunn, W. B.; Schuler, S.; Broadhurst, D.; Jarvis, R.; Stephens, G. M.; Goodacre, R. Analytical Chemistry 2008, 80, 2939. https://doi.org/10.1021/ac7023409
  17. Maharjan, R. P.; Ferenci, T. Analytical Biochemistry 2003, 313, 145 https://doi.org/10.1016/S0003-2697(02)00536-5
  18. Miller, J. C.; Miller, J. N. Statistics for Analytical Chemistry; Ellis Horwood Ltd.: Chichester, UK, 1988.
  19. Rao, D. G. In Introduction to Biochemical Engineering; McGraw- Hill: New delhi, India, 2006; p169.
  20. Soga, T.; Ueno, Y.; Naraoka, H.; Ohashi, Y.; Tomita, M.; Nishioka, T. Analytical Chemistry 2002, 74, 2233. https://doi.org/10.1021/ac020064n
  21. Pramanik, J.; Keasling, J. D. Biotechnol Bioeng. 1997, 56, 399
  22. Kolter, R.; Siegele, D. A.; Torma, A. Annual Reviews Microbiol. 1993, 47, 855. https://doi.org/10.1146/annurev.mi.47.100193.004231

Cited by

  1. Improvement of free fatty acid production in Escherichia coli using codon-optimized Streptococcus pyogenes acyl-ACP thioesterase vol.36, pp.10, 2013, https://doi.org/10.1007/s00449-012-0882-2
  2. In Situ-Monitoring of Biofilm Formation by Using Surface-Enhanced Raman Scattering vol.67, pp.5, 2013, https://doi.org/10.1366/12-06896
  3. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803 vol.13, pp.1, 2014, https://doi.org/10.1186/s12934-014-0151-y
  4. vol.62, pp.51, 2014, https://doi.org/10.1021/jf503671m
  5. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803 vol.11, pp.3, 2015, https://doi.org/10.1039/C4MB00651H
  6. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803 vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.00487
  7. The effect of global transcriptional regulators on the anaerobic fermentative metabolism of Escherichia coli vol.13, pp.7, 2017, https://doi.org/10.1039/C6MB00721J
  8. The potential effect of low cell osmolarity on cell function through decreased concentration of enzyme substrates vol.69, pp.20, 2011, https://doi.org/10.1093/jxb/ery254
  9. Activity of fructose-1,6-bisphosphatase fromCampylobacter jejuni vol.98, pp.4, 2011, https://doi.org/10.1139/bcb-2020-0021
  10. Byproduct-free geraniol glycosylation by whole-cell biotransformation with recombinant Escherichia coli vol.43, pp.1, 2011, https://doi.org/10.1007/s10529-020-02993-z
  11. Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening vol.9, pp.None, 2011, https://doi.org/10.3389/fbioe.2021.738052