References
- Fiehn, O. Comparative and Functional Genomics 2001, 2, 155. https://doi.org/10.1002/cfg.82
- Fiehn, O.; Kopka, J.; Dormann, P.; Altmann T.; Trethewey, R. N.; Willmitzer, L. Nature Biotechnol. 2000, 18, 1157.
- Gipson, G. T.; Tatsuoka, K. S.; Sokhansanj, B. A.; Ball, R. J.; Connor, S. C. Metabolomics 2008, 4, 94. https://doi.org/10.1007/s11306-007-0096-9
- Hollywood, K.; Brison, D. R.; Goodacre, R. Proteomics 2006, 6, 4716. https://doi.org/10.1002/pmic.200600106
- Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry Reviews 2007, 26, 51. https://doi.org/10.1002/mas.20108
- Shulaev, V. Briefings in Bioinformatics 2006, 7, 128. https://doi.org/10.1093/bib/bbl012
- Buchholz, A.; Hurlebaus, J.; Wandrey, C.; Takors, R. Biomolecular Engineering 2002, 19, 5. https://doi.org/10.1016/S1389-0344(02)00003-5
- Dunn, W. B.; Ellis, D. I. Trends in Analytical Chemistry 2005, 24, 285. https://doi.org/10.1016/j.trac.2004.11.021
- Moco, S.; Bino, R. J.; De Vos, R. C. H.; Vervoort, J. Trends in Analytical Chemistry 2007, 26, 855. https://doi.org/10.1016/j.trac.2007.08.003
- Luo, B.; Groenke, K.; Takors, R.; Wandrey, C.; Oldiges, M. Journal of Chromatography A 2007, 1147, 153. https://doi.org/10.1016/j.chroma.2007.02.034
- Coulier, L.; Bas, R.; Jespersen, S.; Verheij, E.; Van der werf, M. J.; Hankemeier, T. Analytical Chemistry 2006, 78, 6573. https://doi.org/10.1021/ac0607616
- Huck, J. H. J.; Struys, E. A.; Verhoeven, N. M.; Jakobs C.; Van der knap, M. S. Clinical Chemistry 2003, 49, 1375. https://doi.org/10.1373/49.8.1375
- Sekiguchi, Y.; Mitsuhashi, N.; Kokaji, T.; Miyakoda, Hi.; Mimura, T. Journal of Chromatography A 2005, 1085, 131. https://doi.org/10.1016/j.chroma.2005.01.098
- Van dam, J. C.; Eman, M. R.; Frank, J.; Lange, H. C.; Van dedem, G. W. K.; Heijnen S. J. Anal. Chim. Acta 2002, 460, 209.
- Chassgnolie, C.; Noisommit-Rizzi, N.; Schmid, J. W.; Mauch, K.; Reuss, M. Biotechnol. Bioeng. 2002, 79, 53. https://doi.org/10.1002/bit.10288
- Winder, C. L.; Dunn, W. B.; Schuler, S.; Broadhurst, D.; Jarvis, R.; Stephens, G. M.; Goodacre, R. Analytical Chemistry 2008, 80, 2939. https://doi.org/10.1021/ac7023409
- Maharjan, R. P.; Ferenci, T. Analytical Biochemistry 2003, 313, 145 https://doi.org/10.1016/S0003-2697(02)00536-5
- Miller, J. C.; Miller, J. N. Statistics for Analytical Chemistry; Ellis Horwood Ltd.: Chichester, UK, 1988.
- Rao, D. G. In Introduction to Biochemical Engineering; McGraw- Hill: New delhi, India, 2006; p169.
- Soga, T.; Ueno, Y.; Naraoka, H.; Ohashi, Y.; Tomita, M.; Nishioka, T. Analytical Chemistry 2002, 74, 2233. https://doi.org/10.1021/ac020064n
- Pramanik, J.; Keasling, J. D. Biotechnol Bioeng. 1997, 56, 399
- Kolter, R.; Siegele, D. A.; Torma, A. Annual Reviews Microbiol. 1993, 47, 855. https://doi.org/10.1146/annurev.mi.47.100193.004231
Cited by
- Improvement of free fatty acid production in Escherichia coli using codon-optimized Streptococcus pyogenes acyl-ACP thioesterase vol.36, pp.10, 2013, https://doi.org/10.1007/s00449-012-0882-2
- In Situ-Monitoring of Biofilm Formation by Using Surface-Enhanced Raman Scattering vol.67, pp.5, 2013, https://doi.org/10.1366/12-06896
- Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803 vol.13, pp.1, 2014, https://doi.org/10.1186/s12934-014-0151-y
- vol.62, pp.51, 2014, https://doi.org/10.1021/jf503671m
- Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803 vol.11, pp.3, 2015, https://doi.org/10.1039/C4MB00651H
- Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803 vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.00487
- The effect of global transcriptional regulators on the anaerobic fermentative metabolism of Escherichia coli vol.13, pp.7, 2017, https://doi.org/10.1039/C6MB00721J
- The potential effect of low cell osmolarity on cell function through decreased concentration of enzyme substrates vol.69, pp.20, 2011, https://doi.org/10.1093/jxb/ery254
- Activity of fructose-1,6-bisphosphatase fromCampylobacter jejuni vol.98, pp.4, 2011, https://doi.org/10.1139/bcb-2020-0021
- Byproduct-free geraniol glycosylation by whole-cell biotransformation with recombinant Escherichia coli vol.43, pp.1, 2011, https://doi.org/10.1007/s10529-020-02993-z
- Metabolic Analysis of Schizochytrium Mutants With High DHA Content Achieved With ARTP Mutagenesis Combined With Iodoacetic Acid and Dehydroepiandrosterone Screening vol.9, pp.None, 2011, https://doi.org/10.3389/fbioe.2021.738052