DOI QR코드

DOI QR Code

Molecular Dynamics of Carbon Nanotubes Deposited on a Silicon Surface via Collision: Temperature Dependence

  • Saha, Leton C. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Mian, Shabeer A. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Kim, Hyo-Jeong (Department of Nanomaterials Engineering, Pusan National University) ;
  • Saha, Joyanta K. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Matin, Mohammad A. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jang, Joon-Kyung (Department of Nanomaterials Engineering, Pusan National University)
  • Received : 2010.10.28
  • Accepted : 2010.12.01
  • Published : 2011.02.20

Abstract

We investigated how temperature influences the structural and energetic dynamics of carbon nanotubes (CNTs) undergoing a high-speed impact with a Si (110) surface. By performing molecular dynamics simulations in the temperature range of 100 - 300 K, we found that a low temperature CNT ends up with a higher vibrational energy after collision than a high temperature CNT. The vibrational temperature of CNT increases by increasing the surface temperature. Overall, the structural and energy relaxation of low temperature CNTs are faster than those of high temperature CNTs.

Keywords

References

  1. Ye, H.; Lam, H.; Titchenal, N.; Gogotsi, Y.; Ko, F. Appl. Phys. Lett. 2004, 85, 1775. https://doi.org/10.1063/1.1787892
  2. Siegel, R. W.; Chang, S. K.; Ash, B. J.; Stone, J.; Ajayan, P. M.; Doremus, R. W.; Schadler, L. S. Scripta Materialia 2001, 44, 2061. https://doi.org/10.1016/S1359-6462(01)00892-2
  3. Thostenson, E. T.; Ren, Z.; Chou, T.-W. Composites Science and Technology 2001, 61, 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  4. Cha, S. I.; Kim, K. T.; Lee, K. H.; Mo, C. B.; Hong, S. H. Scripta Materialia 2005, 53, 793. https://doi.org/10.1016/j.scriptamat.2005.06.011
  5. Qi, D.; Hinkley, J.; He, G. Modelling Simul. Mater. Sci. Eng. 2005, 13, 493. https://doi.org/10.1088/0965-0393/13/4/002
  6. Frankland, S. J. V.; Harik, V. M.; Odegard, G. M.; Brenner, D. W.; Gates, T. S. Composites Science and Technology 2003, 63, 1655. https://doi.org/10.1016/S0266-3538(03)00059-9
  7. Mylvaganam, K.; Zhang, L. C. Appl. Phys. Lett. 2006, 89, 123127. https://doi.org/10.1063/1.2356325
  8. Laha, T.; Agarwal, A. Materials Science and Engineering A 2008, 480, 323. https://doi.org/10.1016/j.msea.2007.07.047
  9. Laha, T.; Agarwal, A.; Mckechnie, T.; Seal, S. Materials Science and Engineering A 2004, 381, 249. https://doi.org/10.1016/j.msea.2004.04.014
  10. Li, C.-J.; Li, W.-Y.; Wang, Y.-Y. Surface and Coatings Technology 2005, 198, 469. https://doi.org/10.1016/j.surfcoat.2004.10.063
  11. Balani, K.; Laha, T.; Agarwal, A.; Karthikeyan, J.; Munroe, N. Surface and Coatings Technology 2005, 195, 272. https://doi.org/10.1016/j.surfcoat.2004.06.028
  12. Bakshi, S. R.; Singh, V.; McCartney, D. G.; Seal, S.; Agarwal, A. Scripta Materialia 2008, 59, 499. https://doi.org/10.1016/j.scriptamat.2008.04.035
  13. Bakshi, S. R.; Singh, V.; Balani, K.; McCartney, D. G.; Seal, S.; Agarwal, A. Surface and Coatings Technology 2008, 202, 5162. https://doi.org/10.1016/j.surfcoat.2008.05.042
  14. Lopez, M. J.; Cabria, I.; March, N. H.; Alonso, J. A. Carbon 2005, 43, 1371. https://doi.org/10.1016/j.carbon.2005.01.006
  15. Liew, K. M.; Wong, C. H.; He, X. Q.; Tan, M. J. Phys. Rev. B 2005, 71, 075424. https://doi.org/10.1103/PhysRevB.71.075424
  16. Che, J.; Cagin, T.; Goddard, W. A. Nanotechnology 2000, 11, 65. https://doi.org/10.1088/0957-4484/11/2/305
  17. Bi, K.; Chen, Y.; Yang, J.; Wang, Y.; Chen, M. Physics Letters A 2006, 350, 150. https://doi.org/10.1016/j.physleta.2005.09.070
  18. Cheng, M.; Lu, Y. IEEE Transactions on Magnetics 2006, 42, 891. https://doi.org/10.1109/TMAG.2006.871371
  19. Yin, H.; Luo, C. Modelling Simulation Mater. Sci. Eng. 2005, 13, 1403. https://doi.org/10.1088/0965-0393/13/8/014
  20. Saha, L. C.; Mian, S. A.; Kim, H.; Jang, J. J. Phys. Chem. C 2009, 113, 16668. https://doi.org/10.1021/jp906964b
  21. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U.K, 1987.
  22. Tersoff, J. Phys. Rev. B 1989, 39, 5566. https://doi.org/10.1103/PhysRevB.39.5566
  23. Zhao, J.-X.; Ding, Y.-H. J. Chem. Theory Comput. 2009, 5, 1099. https://doi.org/10.1021/ct9000069
  24. Smith, W.; Yong, C. W.; Rodger, P. M. Mol. Simul. 2002, 28, 385. https://doi.org/10.1080/08927020290018769
  25. Kabsch, W. Acta Crystallogr. Sect. A 1978, 34, 827. https://doi.org/10.1107/S0567739478001680
  26. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33. https://doi.org/10.1016/0263-7855(96)00018-5

Cited by

  1. High velocity impact analysis of free-free carbon nanotubes vol.111, pp.None, 2022, https://doi.org/10.1016/j.jmgm.2021.108105