References
- Minczewski, J.; Chwastowska, J.; Dybczynski, R. Separation and Preconcentration Method in Inorganic Trace Analysis; Ellis Horwood/Halsted Press: Chichester, 1982; p 26.
- Tu, Z.; He, Q.; Chang, X.; Hu, Z.; Gao, R.; Zhang, L.; Li, Z. Anal. Chim. Acta 2009, 649, 252. https://doi.org/10.1016/j.aca.2009.07.042
- Kagaya, S.; Maeba, E.; Inoue, Y.; Kamichatani, W.; Kajiwara, T.;Yanai, H.; Saito, M.; Tohda, K. Talanta 2009, 79, 146. https://doi.org/10.1016/j.talanta.2009.03.016
- Boevski, I.; Daskalova, U. N.; Havezov, I. Spectrochim. Acta B2000, 55, 1643. https://doi.org/10.1016/S0584-8547(00)00265-2
- Atanassova, D.; Stefanova, V.; Russeva, E. Talanta 1998, 47, 1237. https://doi.org/10.1016/S0039-9140(98)00211-2
- Nicolai, M.; Rosin, C.; Tousset, N.; Nicolai, Y. Talanta 1999, 50,433. https://doi.org/10.1016/S0039-9140(99)00130-7
- Tarleya, C. R. T.; Santosa, V. S.; Baetaa, B. E. L.; Pereirab, A. C.;Kubota, L. T. J. Hazard. Mater. 2009, 169, 256. https://doi.org/10.1016/j.jhazmat.2009.03.077
- Duran, C.; Gündogdu, A.; Bulut, V. N.; Soylak, M.; Elci, L.; senturk,H. B.; Tufekci, M. J. Hazard. Mater. 2007, 146, 347. https://doi.org/10.1016/j.jhazmat.2006.12.029
- Rao, T. P.; Daniel, S.; Gladis, J. M. Trends Anal. Chem. 2004, 23,28. https://doi.org/10.1016/S0165-9936(04)00106-2
- Camel, V. Spectrochim. Acta B 2003, 58, 1177. https://doi.org/10.1016/S0584-8547(03)00072-7
- Garg, B. S.; Sharma, R. K.; Bhojak, N.; Mittal, S. Microchem J.1999, 61, 94. https://doi.org/10.1006/mchj.1998.1681
- Kantipuly, C.; Atragadda, S. K.; Chow, A.; Gesser, H. D. Talanta1990, 37, 491. https://doi.org/10.1016/0039-9140(90)80075-Q
- Sharma, R. K.; Pant, P. J. Hazard. Mater. 2009, 163, 295. https://doi.org/10.1016/j.jhazmat.2008.06.120
- Mashhadizadeh, M. H.; Pesteh, M.; Talakesh, M.; Sheikhshoaie, I.;Ardakani, M. M.; Karimi, M. A. Spectrochim. Acta B 2008, 63,885. https://doi.org/10.1016/j.sab.2008.03.018
- Zougagh, M.; Pavón, J. M. C.; Torres, A. G. Anal. Bioanal. Chem.2005, 381, 1103. https://doi.org/10.1007/s00216-004-3022-2
- Sacmaci, s.; Saçmacı, M.; Soykan, C.; Kartal, S. J. Macromol. Sci.A 2010, 47, 552. https://doi.org/10.1080/10601321003742055
- Azab, M. M. J. Polym. Res. 2005, 12, 9. https://doi.org/10.1007/s10965-004-0655-y
- Stieber, F.; Mazitschek, R.; Soric, N.; Giannis, A; Waldmann, H.Angew. Chem. Int. Ed. 2002, 41, 4757. https://doi.org/10.1002/anie.200290040
- Alan, M.; Kara, D.; Fisher, A. Sep. Sci. Technol. 2007, 42, 879. https://doi.org/10.1080/01496390601174182
- Venkatesh, G.; Jain, A.K.; Singh, A. K. Microchim. Acta 2005,149, 213. https://doi.org/10.1007/s00604-005-0320-0
- Ghaedi, M.; Niknam, K.; Shokrollahi, A.; Niknam, E.; Ghaedi, H.;Soylak, M. J. Hazard. Mater. 2008, 158, 131. https://doi.org/10.1016/j.jhazmat.2008.01.037
Cited by
- A coprecipitation procedure for the determination of some metals in food and environmental samples by flame atomic absorption spectroscopy vol.5, pp.16, 2013, https://doi.org/10.1039/c3ay40727f
- Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to Their Determination by FAAS vol.159, pp.1-3, 2014, https://doi.org/10.1007/s12011-014-0001-0
- Pseudo stir bar sorptive microextraction fiber using nanoparticles reinforcedsol–gel for the determination of Co(II) and Cd(II) ions in wastewaters vol.51, pp.4, 2016, https://doi.org/10.1080/01496395.2015.1115070
- A new procedure for determination of nickel in some fake jewelry and cosmetics samples after dispersive liquid-liquid microextraction by FAAS vol.31, pp.11, 2017, https://doi.org/10.1002/aoc.4081
- @Cu@diphenylthiocarbazone particles vol.41, pp.15, 2017, https://doi.org/10.1039/C7NJ00776K
- A Zn based metal organic framework nanocomposite: synthesis, characterization and application for preconcentration of cadmium prior to its determination by FAAS vol.7, pp.71, 2017, https://doi.org/10.1039/C7RA08354H
- a zeta potential analyzer vol.42, pp.7, 2018, https://doi.org/10.1039/C7NJ04900E
- Solid-phase extraction of ultra-trace levels of lead using tannic acid-coated graphene oxide as an efficient adsorbent followed by electrothermal atomic absorption spectrometry; response surface methodology – central composite design vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03226A
- Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes pp.1520-5754, 2018, https://doi.org/10.1080/01496395.2018.1502781
- An automated solid phase extraction coupled with electrothermal atomic absorption spectrometric determination of Pb(II) in high salt content samples vol.86, pp.None, 2011, https://doi.org/10.1016/j.talanta.2011.08.045
- Magnetic dispersive solid‐phase extraction based on graphene oxide/Fe3O4@polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, vol.98, pp.9, 2011, https://doi.org/10.1002/jsfa.8873
- A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: A multivariate study vol.51, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2018.10.016
- A tandem ionic liquid‐based dispersive microextraction method using in‐syringe air‐assisted vesicle system for rapid determination of lead and cadmium in artificial sweat extract of vol.34, pp.9, 2011, https://doi.org/10.1002/aoc.5784
- Lead of detection in rhododendron leaves using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence vol.738, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.139402
- Determination of Manganese in Coffee and Wastewater Using Deep Eutectic Solvent Based Extraction and Flame Atomic Absorption Spectrometry vol.54, pp.6, 2011, https://doi.org/10.1080/00032719.2020.1789871
- Air-assisted liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace Pb in biological and aqueous samples vol.101, pp.6, 2011, https://doi.org/10.1080/03067319.2019.1672672