DOI QR코드

DOI QR Code

Reduced Density Matrix Theory for Vibrational Absorption Line Shape in Energy Transfer Systems: Non-Condon Effects in Water

  • Yang, Mi-No (Department of Chemistry, Chungbuk National University)
  • Received : 2010.11.04
  • Accepted : 2010.11.24
  • Published : 2011.02.20

Abstract

Using the projection operator technique, a reduced density matrix theory for linear absorption spectrum of energy transfer systems is developed for the theoretical absorption line shape of the systems with non-Condon transitions. As an application, we considered a model system of OH vibrations of water. In the present model calculation, the OH vibration modes are coupled to each other via intra-molecular coupling mechanism while their intermolecular couplings are turned off. The time-correlation functions appearing in the formulation are calculated from a mixed quantum/classical mechanics method. The present theory is successful in reproducing the exact absorption line shape. Also the present theory was improved from an existing approximate theory, time-averaged approximation approach.

Keywords

References

  1. Saven, J. G.; Skinner, J. L. J. Chem. Phys. 1993, 99, 4391. https://doi.org/10.1063/1.466092
  2. Stephens, M. D.; Saven, J. G.; Skinner, J. L. J. Chem. Phys. 1997,106, 2129. https://doi.org/10.1063/1.473144
  3. Geva, E.; Skinner, J. L. J. Phys. Chem. B 1997, 101, 8920. https://doi.org/10.1021/jp971722o
  4. Burt, J. A.; Zhao, X.; McHale, J. L. J. Chem. Phys. 2004, 120, 4344. https://doi.org/10.1063/1.1644534
  5. Bhattacharyya, D.; Dutta, B. K.; Ray, B.; Ghosh, P. N. Chem. Phys. Lett. 2004, 389, 113. https://doi.org/10.1016/j.cplett.2004.03.076
  6. Yang, M. J. Chem. Phys. 2005, 123, 124705. https://doi.org/10.1063/1.2046668
  7. Yang, M. J. Mol. Spectrosc. 2006, 239, 108. https://doi.org/10.1016/j.jms.2006.06.004
  8. Mori, H. Prog. Theor. Phys. 1965, 33, 423. https://doi.org/10.1143/PTP.33.423
  9. Zwanzig, R. Phys. Rev. 1961, 124.
  10. Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys. 2005,123, 044513. https://doi.org/10.1063/1.1961472
  11. Grigolini, P. J. Mol. Struct. 1991, 250, 119. https://doi.org/10.1016/0022-2860(91)85024-W
  12. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York.
  13. Shibata, F.; Takahashi, Y.; Hashitsume, N. J. Stat. Phys. 1977, 17,171. https://doi.org/10.1007/BF01040100
  14. Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L. J. Chem. Phys. 2004,120, 8107. https://doi.org/10.1063/1.1683072
  15. Auer, B.; Kumar, R.; Schmidt, J. R.; Skinner, J. L. P. Natl. Acad. Sci. USA 2007, 104, 14215. https://doi.org/10.1073/pnas.0701482104
  16. Yang, M.; Skinner, J. L. Phys. Chem. Chem. Phys. 2010, 12, 982. https://doi.org/10.1039/b918314k
  17. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem.1987, 91, 6269. https://doi.org/10.1021/j100308a038
  18. Auer, B. M.; Skinner, J. L. J. Chem. Phys. 2007, 127, 104105. https://doi.org/10.1063/1.2766943