DOI QR코드

DOI QR Code

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon (Department of Chemistry, Institute of Basic Sciences and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Han, Jae-Eok (Department of Chemistry, Institute of Basic Sciences and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Jung, Duk-Young (Department of Chemistry, Institute of Basic Sciences and Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • 투고 : 2010.10.28
  • 심사 : 2010.11.24
  • 발행 : 2011.02.20

초록

Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

키워드

참고문헌

  1. Schulz, D. L.; Curtis, C. J.; Flitton, R. A.; Wiesner, H.; Keane, J.;Matson, R. J.; Jones, K. M.; Parilla, P. A.; Noufi, R.; Ginley, D.S. J. Electron. Mater. 1998, 27, 433. https://doi.org/10.1007/s11664-998-0173-5
  2. Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.;Perkins, C. L.; To, B.; Noufi, R. Prog. Photovoltaics Res. Appl.2008, 16, 235. https://doi.org/10.1002/pip.822
  3. Kaelin, M.; Rudmann, D.; Tiwari, A. N. Sol. Energy 2004, 77,749. https://doi.org/10.1016/j.solener.2004.08.015
  4. Koo, B.; Patel, R. N.; Korgel, B. A. J. Am. Chem. Soc. 2009, 131,3134. https://doi.org/10.1021/ja8080605
  5. Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.;Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Nano Lett. 2008, 8,2982. https://doi.org/10.1021/nl802042g
  6. Jung, D.-Y.; Han, J. E.; Chang, J. 2009, PCT/KR2008/003421.
  7. Grisaru, H.; Palchik, O.; Gedanken, A.; Palchik, V.; Slifkin, M.A.; Weiss, A. M. Inorg. Chem. 2003, 42, 7148. https://doi.org/10.1021/ic0342853
  8. Landry, C. C.; Lockwood, J.; Barron, A. R. Chem. Mater. 1995,7, 699. https://doi.org/10.1021/cm00052a015
  9. Chung, J.; Kim, S.-J. Bull. Korean Chem. Soc. 2010, 31, 2695. https://doi.org/10.5012/bkcs.2010.31.9.2695
  10. Wada, T.; Kinoshita, H. J. Phys. Chem. Solids 2005, 66, 1987. https://doi.org/10.1016/j.jpcs.2005.09.082
  11. Xu, J.; Lee, C.-S.; Tang, Y.-B.; Chen, X.; Chen, Z.-H.; Zhang, W.-J.; Lee, S. -T.; Zhang, W.; Yang, Z. ACS Nano 2010, 4, 1845. https://doi.org/10.1021/nn9013627
  12. Yang, Y.-H.; Chen, Y.-T. J. Phys. Chem. B 2006, 110, 17370. https://doi.org/10.1021/jp062789r
  13. Jiang, Y.; Wu, Y.; Mo, X.; Yu, W.; Xie, Y.; Qian, Y. Inorg. Chem. 2000, 39, 2964. https://doi.org/10.1021/ic000126x
  14. Li, B.; Xie, Y.; Huang, J.; Qian, Y. Adv. Mater. 1999, 11, 1456. https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1456::AID-ADMA1456>3.0.CO;2-3
  15. Xiao, J.; Xie, Y.; Xiong, Y.; Tang, R.; Qian, Y. J. Mater. Chem.2001, 11, 1417. https://doi.org/10.1039/b100092f
  16. Chen, H.; Yu, S.-M.; Shin, D.-W.; Yoo, J.-B. Nanoscale Res. Lett.2010, 5, 217. https://doi.org/10.1007/s11671-009-9468-6
  17. Suri, D. K.; Nagpal, K. C.; Chadha, G. K. J. Appl. Cryst. 1989, 22,578. https://doi.org/10.1107/S0021889889008289
  18. Martell, A. E.; Chaberek, S. Anal. Chem. 1954, 26, 1692. https://doi.org/10.1021/ac60095a005
  19. Rincón, C.; Ramírez, F. J. J. Appl. Phys. 1992, 72, 4321. https://doi.org/10.1063/1.352195
  20. Shirakata, S.; Murakami, T.; Kariya, T.; Isomura, S. Jpn. J. Appl. Phys., Part 1 1996, 35, 191. https://doi.org/10.1143/JJAP.35.191
  21. Wan, L.; Cao, Y.; Wang, D. J. Mater. Res. 2009, 24, 2294.
  22. Kavcar, N. Sol. Energy Mater. Sol. Cells 1998, 52, 183. https://doi.org/10.1016/S0927-0248(97)00287-0

피인용 문헌

  1. ChemInform Abstract: Solvothermal Synthesis of Copper Indium Diselenide in Toluene. vol.42, pp.23, 2011, https://doi.org/10.1002/chin.201123019
  2. Powder Using Hydrothermal Route vol.2013, pp.2314-4858, 2013, https://doi.org/10.1155/2013/685836
  3. Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1473
  4. Synthesis and characterization of CZTSe nanoinks using polyetheramine as solvent vol.4, pp.8, 2014, https://doi.org/10.1364/OME.4.001593
  5. Effect of Solvent Chelating on Crystal Growth Mechanism of CZTSe Nanoink in Polyetheramine vol.14, pp.5, 2015, https://doi.org/10.1109/TNANO.2015.2460257
  6. Thin-Film Solar Cells vol.8, pp.14, 2015, https://doi.org/10.1002/cssc.201403464
  7. A Noninjection Reaction Route to CuInSe2 Nanocrystals with Triethanolamine as the Complexing Agent vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4332