References
- Ertl, G.; Küppers, J. Low Energy Electrons and Surface Chemistry; VCH Publishers: 1985.
- Yang, M. C.; Lee, H. W.; Kang, H. J. Chem. Phys.1995, 103, 5149. https://doi.org/10.1063/1.470602
- Yang, M. C.; Hwang, C. H.; Ku, J. K.; Kang, H. Surface Sci. 1996,366, L719. https://doi.org/10.1016/0039-6028(96)00945-4
- Yang, M. C.; Hwang, C. H.; Kang, H. J. Chem. Phys. 1997, 107,2611. https://doi.org/10.1063/1.474572
- Kang, H.; Kim, K. D.; Kim, K. Y. J. Am. Chem. Soc. 1997, 119,12002. https://doi.org/10.1021/ja970246c
- Kang, H.; Yang, M. C.; Kim, K. D.; Kim, K. Y. Int. J. Mass Spectrom.Ion Proc. 1998, 174, 143. https://doi.org/10.1016/S0168-1176(97)00297-8
- Kim, K.-Y.; Shin, T.-H.; Han, S.-J.; Kang, H. Phys. Rev. Lett. 1999,82, 1329. https://doi.org/10.1103/PhysRevLett.82.1329
- Shin, T.-H.; Han, S.-J.; Kang, H. Nucl. Instrum. Methods in Phys. Res. B 1999, 157, 191. https://doi.org/10.1016/S0168-583X(99)00419-X
- Han, S-J.; Park, S. C.; Lee, J.-G.; Kang, H. J. Chem. Phys. 2000,112, 8660. https://doi.org/10.1063/1.481467
- Park, S.-C.; Kang, H.; Lee, S. B. Surface Sci. 2000, 450, 117. https://doi.org/10.1016/S0039-6028(00)00052-2
- Yoon, H. G. et al. J. Vac. Sci. Tech. A 2000, 18, 1464. https://doi.org/10.1116/1.582470
- Liu, W. L. et al. Thin Solid Films 2004, 461, 266. https://doi.org/10.1016/j.tsf.2004.02.038
- Kang, H.; Shin, T.-H.; Park, S.-C.; Kim, I. K.; Han, S.-J. J. Am. Chem. Soc. 2000, 122, 9842 . https://doi.org/10.1021/ja000218l
- Park, S.-C.; Pradeep, T.; Kang, H. J. Chem. Phys. 2000, 113, 9373. https://doi.org/10.1063/1.1328361
- Park, S.-C.; Maeng, K.-W.; Pradeep, T.; Kang, H. Angew. Chem. Int. Ed. 2001, 40, 1497. https://doi.org/10.1002/1521-3773(20010417)40:8<1497::AID-ANIE1497>3.0.CO;2-F
- Park, S.-C.; Maeng, K.-W.; Pradeep, T.; Kang, H. Nucl. Instrum.Methods in Phys. Res. B 2001, 182, 193. https://doi.org/10.1016/S0168-583X(01)00675-9
- Han, S-J.; Lee, C.-W.; Hwang, C.-H.; Lee, K.-H.; Yang, C.; Kang, H. Bull. Korean Chem. Soc. 2001, 22, 883.
- Hwang, C.-H.; Lee, C.-W.; Kang, H.; Kim, C. M. Surface Sci. 2001, 490, 144. https://doi.org/10.1016/S0039-6028(01)01324-3
- Kang, H.; Lee, C. W.; Hwang, C. H.; Kim, C. M. Appl. Surface Sci. 2003, 203, 842. https://doi.org/10.1016/S0169-4332(02)00819-X
- Kim, C. M.; Hwang, C.-H.; Lee, C.-W.; Kang, H. Angew. Chem. Int. Ed. 2001, 41, 146.
- Kasi, S. R.; Kang, H.; Sass, C. S.; Rabalais, J. W. Surf. Sci. Rep.1989, 10, 1. https://doi.org/10.1016/0167-5729(89)90005-8
- Morris, M. R.; Riederer, D. E.; Winger, B. E., Jr.; Cooks, R. G.; Ast,T.; Chidsey, C. E. D. Int. J. Mass Spectrom. Ion Poc. 1992, 122, 181. https://doi.org/10.1016/0168-1176(92)87016-8
- Cooks, R. G.; Ast, T.; Pradeep, T.; Wysocki, V. Acc. Chem. Res. 1994, 27, 316. https://doi.org/10.1021/ar00047a001
- Murata, Y. Unimolecular and Bimolecular Reaction Dynamic;Ng, C. Y., Baer, T., Powis, I., Eds.; John Wiley & Sons: 1994;Chapter 9.
- Han, S-J.; Lee, C.-W.; Yoon, H.; Kang, H. J. Chem. Phys. 2002,116, 2684. https://doi.org/10.1063/1.1449948
- Kim, Y. K.; Park, S. C.; Kim, J. H.; Lee, C. W.; Kang, H. J. Phys. Chem. C 2008, 112, 18104. https://doi.org/10.1021/jp806643e
- Kim, Y. K.; Kim, S. K.; Kim, J. H.; Kang, H. J. Phys. Chem. C2009, 113, 16863. https://doi.org/10.1021/jp907653y
- Kim, S. K.; Kang, H. J. Phys. Chem. Lett. 2010, 1, 3085-3089. https://doi.org/10.1021/jz1011669
- Kang, H. Acc. Chem. Res. 2005, 38, 893. https://doi.org/10.1021/ar0501471
- Jung, K. H.; Park, S. C.; Kim, J. H.; Kang, H. J. Chem. Phys. 2004,121, 2758. https://doi.org/10.1063/1.1770518
- Park, S. C.; Pradeep, T.; Kang, H. J. Chem. Phys. 2000, 113, 9373. https://doi.org/10.1063/1.1328361
- Kim, J. H.; Shin, T.; Jung, K. H.; Kang, H. ChemPhysChem 2005, 6, 440. https://doi.org/10.1002/cphc.200400429
- Kim, J. H.; Kim, Y. K.; Kang, H. J. Phys. Chem. C 2007, 111,8030. https://doi.org/10.1021/jp0701587
- Park, S. C.; Jung, K. H.; Kang, H. J. Chem. Phys. 2004, 121, 2765. https://doi.org/10.1063/1.1770548
- Park, S. C.; Maeng, K. W.; Pradeep, T.; Kang, H. Angew. Chem. Int. Ed. 2001, 40, 1497. https://doi.org/10.1002/1521-3773(20010417)40:8<1497::AID-ANIE1497>3.0.CO;2-F
- Park, S. C.; Kang, H. J. Phys. Chem. B 2005, 109, 5124.
- Park, S. C.; Kim, J. K.; Lee, C. W.; Moon, E. S.; Kang, H. ChemPhysChem 2007, 8, 2520. https://doi.org/10.1002/cphc.200700489
- Lee, C. W.; Lee, P. R.; Kang, H. Angew. Chem. Int. Ed. 2006, 45,5529. https://doi.org/10.1002/anie.200601317
- Lee, C. W.; Lee, P. R.; Kim, Y. K.; Kang, H. J. Chem. Phys. 2007,127, 084701. https://doi.org/10.1063/1.2759917
- Moon, E. S.; Lee, C. W.; Kang, H. Phys. Chem. Chem. Phys. 2008,10, 4814. https://doi.org/10.1039/b807730b
- Moon, E. S.; Lee, C. W.; Kim, J. K.; Park, S. C.; Kang, H. J. Chem. Phys. 2008, 128, 191101. https://doi.org/10.1063/1.2925209
- Kim, J. H.; Kim, Y. K.; Kang, H. J. Chem. Phys. 2009, 131, 044705. https://doi.org/10.1063/1.3187544
- Moon, E. S.; Yoon, J.; Kang, H. J. Chem. Phys. 2010, 133, 044709. https://doi.org/10.1063/1.3457379
- Park, S. C.; Maeng, K. W.; Kang, H. Chem.-Eur. J. 2003, 9, 1706. https://doi.org/10.1002/chem.200390194
- Kim, J. H.; Kim, Y. K.; Kang, H. J. Phys. Chem. C 2009, 113,321. https://doi.org/10.1021/jp807774v
- Lee, P. R.; Lee, C. W.; Kim, J. K.; Moon, E. S.; Kang, H. Chem.-Asian J., in press.
- Lee, C. W.; Kim, J. K.; Moon, E. S.; Minh, Y. C.; Kang, H. Astrophys J. 2009, 697, 428. https://doi.org/10.1088/0004-637X/697/1/428
- Moon, E. S.; Kang, H.; Oba, Y.; Watanabe, N.; Kouchi, A. Astrophys J. 2010, 713, 906. https://doi.org/10.1088/0004-637X/713/2/906
- Park, S-C.; Moon, E-S.; Kang, H. Phys. Chem. Chem. Phys. 2010,12, 12000. https://doi.org/10.1039/c003592k
- Lahaye, R. J. W. E.; Kang, H. Phys. Rev. B 2003, 67, 033401. https://doi.org/10.1103/PhysRevB.67.033401
- Lahaye, R. J. W. E. Surf. Sci. 2010, 604, 1135. https://doi.org/10.1016/j.susc.2010.03.028
- Han, S.-J.; Lee, C.-W.; Lahaye, R. J. W. E.; Kang, H. Surf. Sci. 2003, 538, 184. https://doi.org/10.1016/S0039-6028(03)00727-1
- Lahaye, R. J. W. E.; Kang, H. ChemPhysChem 2004, 5, 697. https://doi.org/10.1002/cphc.200300983
- Hahn, J. R.; Lee, C.-W.; Han, S. J.; Lahaye, R. J. W. E.; Kang, H.J. Phys. Chem. A 2002, 106, 9827. https://doi.org/10.1021/jp0203402
- Lee, C.-W.; Lee, P.-R.; Lahaye, R. J. W. E.; Kang, H. Phys. Chem. Chem. Phys. 2009, 11, 2268. https://doi.org/10.1039/b815764b
- Kim, J.-H.; Lahaye, R. J. W. E.; Kang, H. Surf. Sci. 2007, 601,434. https://doi.org/10.1016/j.susc.2006.06.043
- Heiland, W. Principles of Low Energy Ion Scattering, Vacuum1982, 32, 539.
- Rabalais, J. W. Principles and Applications of Ion Scattering Spectrometry; Wiley-Interscience: 2003.
- Lahaye, R. J. W. E.; Kang, H. Surface Sci. 2001, 490, 144. https://doi.org/10.1016/S0039-6028(01)01324-3
- Yang, M. C.; Lee, H. W.; Kim, C.; Kang, H. Surface Sci. 1996,357, 595. https://doi.org/10.1016/0039-6028(96)00229-4
- Lee, H. W.; Kang, H. Bull. Korean Chem. Soc. 1995, 16, 101.
- Bazarbayev, N. N.; Evstifeev, V. V.; Krylov, N. M.; Kubryaschova,L. B. Soviet. J. Surface (Russian) 1988, 9, 170.
- Evstifeev, V. V.; Ivanov, I. V. Surface Sci. 1989, 217, L373.
- Kim, C.; Kang, H.; Park, S. C. Nucl. Instrum. Methods in Phys. Res. B 1995, 95, 171. https://doi.org/10.1016/0168-583X(94)00432-3
- Kolodney, E.; Amirav, A.; Elber, R.; Gerber, R. B. Chem. Phys. Lett. 1985, 113, 303. https://doi.org/10.1016/0009-2614(85)80265-7
- Kim, C.; Han, J. R.; Kang, H. Surface Sci. 1994, 320, L76. https://doi.org/10.1016/0039-6028(94)90301-8
- Shin, T.; Kim, K. N.; Lee, C.W.; Shin, S. K.; Kang, H. J. Phys. Chem. B 2003, 107, 11674. https://doi.org/10.1021/jp030314j
- Salmeron, M.; Somorjai, G. A. J. Phys. Chem. 1982, 86, 341. https://doi.org/10.1021/j100392a013
- Zaera, F.; Janssens, T. V. W.; Ofner, H. Surf. Sci. 1996, 368, 371. https://doi.org/10.1016/S0039-6028(96)01078-3
- Sheppard, N. Ann. Rev. Phys. Chem. 1988, 39, 589. https://doi.org/10.1146/annurev.pc.39.100188.003105
- Buch, V.; Sadlej, J.; Aytemiz-Uras, N.; Devlin, J. P. J. Phys. Chem. A 2002, 106, 9374. https://doi.org/10.1021/jp021539h
- Molina, M. J.; Tso, T. L.; Molina, L. T.; Wang, F. C. Y. Science 1987, 238, 1253. https://doi.org/10.1126/science.238.4831.1253
Cited by
- Low-Energy Ionic Collisions at Molecular Solids vol.112, pp.10, 2012, https://doi.org/10.1021/cr200384k
- Transport and Surface Accumulation of Hydroniums and Chlorides in an Ice Film. A High Temperature (140–180 K) Study vol.116, pp.41, 2012, https://doi.org/10.1021/jp3061416
- Generation of strong electric fields in an ice film capacitor vol.139, pp.7, 2013, https://doi.org/10.1063/1.4818535
- Probing Molecular Solids with Low-Energy Ions vol.6, pp.1, 2013, https://doi.org/10.1146/annurev-anchem-062012-092547
- Phase Transitions of Amorphous Solid Acetone in Confined Geometry Investigated by Reflection Absorption Infrared Spectroscopy vol.118, pp.47, 2014, https://doi.org/10.1021/jp503997t
- Effect of Electric Field on Condensed-Phase Molecular Systems. I. Dipolar Polarization of Amorphous Solid Acetone vol.119, pp.27, 2015, https://doi.org/10.1021/acs.jpcc.5b01849
- Reaction of Nitrogen Dioxide with Ice Surface at Low Temperature (≤170 K) vol.119, pp.38, 2015, https://doi.org/10.1021/acs.jpcc.5b05497
- Solvation and Reaction of Ammonia in Molecularly Thin Water Films vol.119, pp.40, 2015, https://doi.org/10.1021/acs.jpcc.5b07525
- Ions vol.120, pp.22, 2016, https://doi.org/10.1021/acs.jpcc.6b03146
- Interaction of Acetonitrile with Alcohols at Cryogenic Temperatures vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b11483
- The Nature of Hydrated Protons on Platinum Surfaces pp.09476539, 2017, https://doi.org/10.1002/chem.201703882
- Spectroscopic Monitoring of the Acidity of Water Films on Ru(0001): Orientation-Specific Acidity of Adsorbed Water vol.20, pp.12, 2014, https://doi.org/10.1002/chem.201304424
- Acidic Water Monolayer on Ruthenium(0001) vol.124, pp.51, 2011, https://doi.org/10.1002/ange.201205756
- Acidic Water Monolayer on Ruthenium(0001) vol.51, pp.51, 2012, https://doi.org/10.1002/anie.201205756
- Asymmetric Transport Efficiencies of Positive and Negative Ion Defects in Amorphous Ice vol.108, pp.22, 2011, https://doi.org/10.1103/physrevlett.108.226103
- Zundel‐like and Eigen‐like Hydrated Protons on a Platinum Surface vol.127, pp.26, 2011, https://doi.org/10.1002/ange.201500410
- Zundel‐like and Eigen‐like Hydrated Protons on a Platinum Surface vol.54, pp.26, 2011, https://doi.org/10.1002/anie.201500410
- Efficient Thermal Reactions of Sulfur Dioxide on Ice Surfaces at Low Temperature: A Combined Experimental and Theoretical Study vol.1, pp.8, 2017, https://doi.org/10.1021/acsearthspacechem.7b00064
- Acid-Promoted Crystallization of Amorphous Solid Water vol.122, pp.42, 2011, https://doi.org/10.1021/acs.jpcc.8b07858
- Iron assisted formation of CO2 over condensed CO and its relevance to interstellar chemistry vol.22, pp.16, 2011, https://doi.org/10.1039/c9cp06983f
- Physics and chemistry on the surface of cosmic dust grains: a laboratory view vol.40, pp.2, 2011, https://doi.org/10.1080/0144235x.2021.1918498
- Proton Transport and Related Chemical Processes of Ice vol.125, pp.30, 2011, https://doi.org/10.1021/acs.jpcb.1c04414