DOI QR코드

DOI QR Code

Anti-inflammatory Activity of Dichloromethane Extract of Auricularia auricula-judae in RAW264.7 Cells

  • Damte, Dereje (College of Veterinary Medicine, Kyungpook National University) ;
  • Reza, Md. Ahsanur (College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Seung-Jin (College of Veterinary Medicine, Kyungpook National University) ;
  • Jo, Woo-Sik (Department of Agricultural Environment, Gyeongbuk Agricultural Technology Administration) ;
  • Park, Seung-Chun (College of Veterinary Medicine, Kyungpook National University)
  • Received : 2010.12.31
  • Accepted : 2011.02.20
  • Published : 2011.03.01

Abstract

The present study investigated the anti-inflammatory effects of dichloromethane extract of Auricularia auricula-judae. Dichloromethane extract of Auricularia auricula-judae inhibited Lipopolysaccharide (LPS)-induced nitric oxide (NO) production significantly in a dose-dependent manner in the concentration ${\geq}\;10\;{\mu}g/ml$ (p < 0.05). Furthermore, RT-PCR results of this study indicated that the extract markedly reduced the expressions of inflammatory cytokines (IL-6, TNF-$\alpha$ and IL-$1{\beta}$) mRNA in LPS-treated murine RAW 264.7 macrophages, which could possibly ameliorate the inflammation. Nevertheless, dichloromethane extract of Auricularia auricula-judae did not show complete inhibition of IL-6 mRNA expression. The inhibition of IL-$1{\beta}$ cytokine at protein level was also observed in a dose dependent manner. In conclusion, the current study revealed the previously unknown effect of dichloromethane ethyl extract of Auricularia auricula-judae inhibitions of the production of NO, IL-6, TNF-$\alpha$ and IL-$1{\beta}$ in LPS-stimulated macrophages.

Keywords

References

  1. Abrham, G., Dovrat, S., Bessler, H., Grossman, S., Nir, U. and Bergman, M. (2010). Inhibition of inflammatory cytokine secretion by plant-derived compounds inuviscolide and tomentosin: The role of NF-$\kappa$B and STAT1. The Open Pharmacology Journal, 4, 36-44. https://doi.org/10.2174/1874143601004010036
  2. Albina, J.L. and Reichner, J.S. (1998). Role of nitric oxide mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev., 17, 39-53. https://doi.org/10.1023/A:1005904704618
  3. Bonizzi, G. and Karin, M. (2004). The two NF-jB activation pathways and their role in innate and adaptive immunity. Trends Immunol., 25, 280-288. https://doi.org/10.1016/j.it.2004.03.008
  4. Boucher, J.L., Moali, C. and Tenu, J.P. (1999). Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci., 55, 1015-1028. https://doi.org/10.1007/s000180050352
  5. Chowdhury, M.A., Abdellatif, K.R.A., Don, Y., Das, D., Suresh, M.R. and Knaus, E.E. (2009). Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2-dihydropyrid-2-one s-lipoxygenase pharmacophore: Biological evaluation as dual inhibitors of cyclooxygenases and 5-Lipoxygenase with anti-inflammatory activity. J. Med. Chem., 52, 1525-1529. https://doi.org/10.1021/jm8015188
  6. Duffield, J.S. (2003). The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci., 104, 27-38. https://doi.org/10.1042/CS20020240
  7. Francia, C., Rapior, S., Courtecuisse, R. and Siroux, Y. (1999). Current research findings on the effects of selected mushroomson cardiovascular diseases. International Journal of Medicinal Mushrooms, 1, 169-172. https://doi.org/10.1615/IntJMedMushrooms.v1.i2.60
  8. Hyun, E., Bolla, M., Steinhoff, M., John, L.W., del Soldato, P. and Vergnolle, N. (2004). Anti-inflammatory effects of nitric oxidereleasing hydrocortisone NCX 1022, in a murine model of contact dermatitis. British Journal of Pharmacology, 143, 618-625. https://doi.org/10.1038/sj.bjp.0705854
  9. Ikekawa, T., Uehara, N., Maeda, Y., Nakanishi, M. and Fukuoka, F. (1969). Antitumor activity of aqueous extracts of edible mushrooms. Cancer Research, 29, 734-735.
  10. Kiemer, A.K., Müller, C. and Vollmar, A.M. (2002). Inhibition of LPS-induced nitric oxide and TNF-alpha production by alphalipoic acid in rat Kupffer cells and in RAW 264.7 murine macrophages. Immunol. Cell. Biol., 80, 550-557. https://doi.org/10.1046/j.1440-1711.2002.01124.x
  11. Krakauer, T. (2004). Molecular therapeutic targets in inflammation, cyclooxygenase and NF-$\kappa$B. Curr. Drug. Targets., 3, 317-324. https://doi.org/10.2174/1568010043343714
  12. Misaki, A., Kakuta, M., Sasaki, T., Tanaka, M. and Miyaji, H. (1981). Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1$\rightarrow$3)-$\beta$-D-glucan of Auricularia auriculajudae,and other polysaccharides containing (1$\rightarrow$3)-glycosidic linkages. Carbohydrate Research, 92, 115-129. https://doi.org/10.1016/S0008-6215(00)85986-8
  13. Murakami, A., Takahashi, D. and Hagihara, K. (2003). Combinatorial effects of nonsteroidal anti-inflammatory drugs and food constituents on production of prostaglandin E2 and tumor necrosis factor alpha in RAW264.7 murine macrophages. Biosci. Biotechnol. Biochem., 67, 1056-1062. https://doi.org/10.1271/bbb.67.1056
  14. Nathan, C. and Xie, Q.W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell, 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  15. Numata, M., Suzuki, S., Miyazawa, N., Miyashita, A., Nagashima, Y., Inoue, S., Kaneko, T. and Okubo, T. (1998). Inhibition of inducible nitric oxide synthase prevents LPS-induced acute lung injury in dogs. J. Immunol., 160, 3031-3037.
  16. Verma, N., Tripathi, S.K., Sahu, D., Das, H.R. and Das, R.H. (2010). Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages. Mol. Cell. Biochem., 336, 127-135. https://doi.org/10.1007/s11010-009-0263-6
  17. Wu, L.C., Fan, N.C., Lin, M.H., Chu, I.R., Huang, S.J., Hu, C.Y. and Han, S.Y. (2008). Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J. Agric. Food Chem., 56, 2341-2349. https://doi.org/10.1021/jf073057e
  18. Yoona, S., Yub, M., Pyunb, Y., Hwangb, J., Chuc, D., Juneja, L. and Mourao, P.A.S. (2003). The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thrombosis Research, 112, 151-158. https://doi.org/10.1016/j.thromres.2003.10.022
  19. Yuan, Z., He, P., Cui, J. and Takeuchi, H. (1998). Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quel. on genetically diabetic KK-Ay mice. Bioscience, Biotechnology, and Biochemistry, 62, 1898-1903. https://doi.org/10.1271/bbb.62.1898
  20. Zhang, G. and Ghosh, S. (2000). Molecular mechanisms of NF-$\kappa$B activation induced by bacterial lipopolysaccharide through Toll like receptors. J. Endotoxin. Res., 6, 453-457.

Cited by

  1. The Chloroform Fraction of Carpinus tschonoskii Leaves Inhibits the Production of Inflammatory Mediators in HaCaT Keratinocytes and RAW264.7 Macrophages vol.28, pp.4, 2012, https://doi.org/10.5487/TR.2012.28.4.255
  2. Quantitative analysis and anti-inflammatory effects of Gleditsia sinensis thorns in RAW 264.7 macrophages and HaCaT keratinocytes vol.12, pp.3, 2015, https://doi.org/10.3892/mmr.2015.3936
  3. First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota) vol.16, pp.11-12, 2017, https://doi.org/10.1007/s11557-017-1344-7
  4. Anti-inflammatory properties of oolong tea ( Camellia sinensis ) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells vol.7, pp.11, 2017, https://doi.org/10.1016/j.apjtb.2017.10.002