DOI QR코드

DOI QR Code

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Sekhon, S.S. (Department of Applied Physics, Guru Nanak Dev University) ;
  • Choi, Young-Woo (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research (KIER)) ;
  • Yang, Tae-Hyun (Fuel Cell Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research (KIER))
  • Received : 2010.11.08
  • Accepted : 2010.12.06
  • Published : 2011.02.28

Abstract

The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.

Keywords

References

  1. S. S. Sekhon, J.-S. Park, J.-S. Baek, S.-D. Yim, T.-H. Yang, and C.-S. Kim, ‘Small-angle X-ray scattering study of water free fuel cell membranes containing ionic liquids’ Chem. Mater., 22, 803 (2010). https://doi.org/10.1021/cm901465p
  2. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, ‘Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above $100{^{\circ}C}$’ J. Chem. Mater., 15, 4896-4915 (2003). https://doi.org/10.1021/cm0310519
  3. J. Roziere and D. J. Jones, ‘Non-fluorinated polymer materials for proton exchange membrane fuel cells’ Annu. Rev. Mater. Res., 33, 503 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154657
  4. E. Cho, J.-S. Park, S. S. Sekhon, G.-G. Park, T.-H. Yang, W.-Y. Lee, C.-S. Kim and S.-B. Park, ‘A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells’ J. Electrochem. Soc., 156, B197 (2009). https://doi.org/10.1149/1.3031406
  5. S. S. Sekhon, J.-S. Park, and Y.-W Choi, ‘A SAXS study on nanostructure evolution in water free membranes containing ionic liquid: from dry membrane to saturation’ Phys. Chem. Chem. Phys., 12, 13763 (2010). https://doi.org/10.1039/c0cp00966k
  6. S. S. Sekhon, J.-S. Park, E. Cho. Y.-G. Yoon, C.-S. Kim, and W.-Y. Lee, ‘Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobicionic liquids’ Macromolecules, 42, 2054 (2009). https://doi.org/10.1021/ma8027112
  7. J.-S. Baek, J.-S Park, S. S. Sekhon, T.-H. Yang, Y.-G. Shul, and J.-H. Choi, ‘Preparation and characterization of nonaqueous proton-conducting membranes with the low content of ionic liquids’ Fuel Cells, 10, 762 (2010). https://doi.org/10.1002/fuce.200900176
  8. J. Li, X. Yang, H. Tang, and M. Pan, ‘Durable and high performance Nafion membrane prepared through hightemperature annealing methodology’ J. Membr. Sci., 361, 38 (2010). https://doi.org/10.1016/j.memsci.2010.06.016
  9. C. R. M Robert and B. Moore, ‘Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes’ Anal. Chem., 58, 2570 (1986). https://doi.org/10.1021/ac00125a047
  10. C. R. M. R. B. Moore, ‘Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules’ 21, 1334 (1988). https://doi.org/10.1021/ma00183a025
  11. G. Gebel, P. A. Aldebert, and M. Pineri, ‘Structure and related properties of solution cast perfluorosulfonated ionomer films’ Macromolecules, 20, 1425 (1987). https://doi.org/10.1021/ma00172a049
  12. Y. H. Luan, Y. M. Zhang, H. Zhang, L. Li, H. Li, and Y. G. Liu, ‘Annealing effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability’ J. Appl. Polym. Sci., 107, 396 (2008). https://doi.org/10.1002/app.27070
  13. Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, ‘Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell’ J. Membr. Sci., 220, 31 (2003). https://doi.org/10.1016/S0376-7388(03)00185-6
  14. T. D. Gierke, G. E. Munn, and F. C. Wilson, ‘The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies’ J. Polym. Sci.: Polym. Phys. Ed., 19, 1687 (1981). https://doi.org/10.1002/pol.1981.180191103
  15. B. Dreyfus, G. Gebel, G. P. Aldebert, M. Pineri, and M. Escoubes, ‘Distribution of the in hydrated perfluorinated ionomer membranes from SANS experiments’ J. Phys. France, 51, 1341 (1990). https://doi.org/10.1051/jphys:0199000510120134100
  16. G. Gebel and J. Lambard, ‘Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes’ Macromolecules, 30, 7914 (1997). https://doi.org/10.1021/ma970801v
  17. S. Kumar and M. Pineri, ‘Interpretation of small-angle xray and neutron scattering data for perfluorosulfonated ionomer membranes’ J. Polym. Sci. B., 24, 1767 (1986). https://doi.org/10.1002/polb.1986.090240812
  18. A. S. Ioselevich, A. A. Kornyshev, and J. H. G. Steinke, ‘Fine Morphology of Proton-Conducting Ionomers’ J. Phys. Chem. B., 108, 11953 (2004). https://doi.org/10.1021/jp049687q
  19. G. Gebel, ‘Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution’ Polymer, 41, 5829 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3
  20. L. Rubatat, A. L. Rollet, G. Gebel, and O. Diat, ‘Evidence of Elongated Polymeric Aggregates in Nafion’ Macromolecules, 35, 4050 (2002). https://doi.org/10.1021/ma011578b
  21. L. Rubatat, A. L. Rollet, G. Gebel, and O. Diat, Fibrillar ‘Structure of Nafion: Matching Fourier and Real Space Studies of Corresponding Films and Solutions’ Macromolecules, 37, 7772 (2004). https://doi.org/10.1021/ma049683j

Cited by

  1. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study vol.2012, 2012, https://doi.org/10.1155/2012/349435
  2. Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107
  3. Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate vol.15, pp.1, 2012, https://doi.org/10.5229/JKES.2012.15.1.035
  4. Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles vol.96, 2016, https://doi.org/10.1016/j.matdes.2016.02.046
  5. Decal Transfer Method of Hydrocarbon Membranes for Fabricating a Membrane Electrode Assembly (MEA) vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.051